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Abstract

The federal government has an expressed interest in moving data and services to

third party service providers in order to take advantage of the flexibility, scalability, and

potential cost savings. This approach is called cloud computing. In order to leverage

the cost advantages of cloud computing, the federal government must utilize public cloud

computing resources and techniques to mitigate security concerns. The purpose of this

research is to examine methodologies that may be employed in order allow users secure

access to public cloud computing resources. The thesis for this research is that efficient

techniques exist to support the secure use of public cloud computing resources by a

large, federated enterprise. The primary contributions of this research are the novel

cryptographic system MA-AHASBE (Multi-Authority Anonymous Hierarchical Attribute-

Set Based Encryption), and the techniques used to incorporate MA-AHASBE in a real

world application. MA-AHASBE was developed specifically because the attribute-based

encryption systems available did not offer everything that would be required in a large,

federated organization. MA-AHASBE allows users to create ciphertext that enforces

an access policy, allows policies to include attributes from multiple authorities in either

a centralized or decentralized environment, allows for protected attributes that are not

disclosed in the ciphertext, and allows an authority to delegate key generation capabilities

to a hierarchy of subdomains. The system is described using asymmetric bilinear maps over

pairing friendly elliptic curves, which have been shown to be the most efficient pairings in

practice. The second significant contribution of this research is the application of MA-

AHASBE to a microblogging application. Two new security models were developed

called A-trusted and ACE-trusted. These models focus on availability as the key trust

requirement between a client and a cloud service provider. The A-trusted model requires

only availability trust, while the ACE-trusted model adds certain computability and access
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control enforcement requirements. While this does increase the trust required in a cloud

service provider, the efficiency gains can be significant and the tradeoff in security seems

reasonable for reputable cloud service providers. Neither model requires confidentiality

trust, so cloud service providers cannot learn the contents of data. In order to support the

security models, a framework called Axon is presented. This framework demonstrates

a layered, data structure oriented approach to building complex, secure data structures

and protocols. This method is used to build Critter, a secure microblogging application.

Performance results indicate that while there is a cost associated with enforcing an ACE-

trusted model in Critter versus processing the data in plaintext, the cost is not unreasonable

and the benefits in security can be significant. The contributions of this research give the

DoD additional tools for supporting the mission while taking advantage of the cost efficient

public cloud computing resources that are becoming widely available.
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NOVEL TECHNIQUES FOR SECURE USE OF

PUBLIC CLOUD COMPUTING RESOURCES

I. Introduction

Cloud computing can be a divisive term. For some it means lower operating costs,

flexible deployment options, and increased security. For many others it can mean

something very different. Some view cloud computing as inherently less secure, less

flexible, and that the lure of lower operating costs is not as attractive as it might seem.

Others see it as a meaningless, marketing buzzword that only serves to create confusion

[48]. Either way, the federal government has an expressed interest in moving data and

services to the cloud in order to take advantage of potential cost savings [67]. Cloud

computing is particularly important in the context of the federal strategy to consolidate

the thousands of data centers owned and operated by the government [66]. In order to

truly leverage the cost advantages of cloud computing, the federal government must utilize

public cloud computing resources. However, naïvely moving sensitive data and services

to third party servers may involve unnecessary tradeoffs in security. The purpose of this

research is to examine methodologies that may be employed in order allow users secure

access to public cloud computing resources. The thesis for this research can be stated as:

Efficient techniques exist to support the secure use of public cloud computing

resources by a large, federated enterprise.

This dissertation describes the work done in supporting this claim. Aside from the

background material presented, the research presented in this document can be divided

into two main areas. The first area is the development of a new cryptographic system
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called Multi-Authority Anonymous Hierarchical Attribute-Set Based Encryption (MA-

AHASBE). This new system presents a solution to the problem of key management that

is often not addressed by research on secure cloud computing. The second area presents

an application of MA-AHASBE for performing secure services using untrusted servers.

This research presents a layered approach to building secure services, in the context of

an example microblogging application called Critter. This research also presents a novel

security model based on the information security principle of availability. These two areas

of the research, along with background material, are divided into the following chapters:

Chapter 2 Provides background material on cloud computing and its use in the federal

government. It reviews important cloud computing terminology and service models

that will be used throughout this document.

Chapter 3 Presents the mathematical background and context necessary to understand the

cryptographic system presented in Chapters 4 and 5. Specifically, this covers the

basics of group theory, elliptic curve cryptography, and bilinear pairings.

Chapter 4 Introduces a novel cryptographic system called MA-AHASBE. MA-AHASBE

is a public key cryptographic system designed to support the security requirements

of a large, federated enterprise attribute based access control (ABAC) system.

This chapter describes the system components in detail, presents a mathematical

construction, and provides an argument for its security in the context of a formal

security model.

Chapter 5 Examines the performance characteristics of the MA-AHASBE system intro-

duced in Chapter 4 through a research implementation. This includes aspects such

as the size of ciphertexts as well as the time required to perform encryption and de-

cryption operations. This is done in the context of a microblogging application that

uses a simple publish-subscribe mechanism. This chapter also introduces a security
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model based on the information security principle of availability that offers a dif-

ferent perspective than the popular honest-but-curious security model. The research

also presents a framework called Axon that facilitates building complex applications

under the new security model through a layered, data structure oriented approach.

Chapter 6 Provides a summary of the research contributions in this document as well as

some thoughts on where future work may take place.

The primary contributions of this research are the novel cryptographic system MA-

AHASBE, and the techniques used to incorporate MA-AHASBE in a real world

application. MA-AHASBE was developed specifically because the attribute-based

encryption systems available did not offer everything that would be required in large,

federated organization such as the DoD. A primary goal of this research is to demonstrate

that attribute-based encryption is a viable option for future applications and that it provides

significant flexibility that is not possible with the current DoD public key infrastructure.

Specifically, it allows applications to be built that can take advantage of the low cost of

public cloud computing without making significant concessions in terms of security. The

storage and processing needs of the DoD are increasing, but there is also constant budgetary

pressure to do more with less. The contributions of this research give the DoD additional

tools for supporting the mission while taking advantage of the cost efficient public cloud

computing resources that are becoming widely available.
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II. Cloud Computing

This chapter discusses the basics of cloud computing and its use in the U.S.

Government. It is divided into two sections. The first section introduces cloud computing

terminology and concepts that are used throughout this document. The second section

presents some key examples of why the government is interested in cloud computing and

provides a few examples of how the government has, albeit conservatively, leveraged the

public cloud.

2.1 Cloud Computing

The term cloud computing is a phrase that has become increasingly popular over the

last ten years. Figure 2.1 shows the usage of the phrase according to Google’s Ngram

Viewer [51], which indexes books from 1800 to 2008. Over time, cloud computing has

become the industry buzzword for the long held dream of large scale computing as a utility.

Especially during its initial growth, cloud computing was met with both enthusiasm and

indifference. On the one hand, it did not represent anything fundamentally new about

computing as much of the technology (e.g., virtualization, network security, distributed

systems, computing as a utility) had been researched extensively since the 1960s. On

the other hand, the combination of an expanding Internet infrastructure combined with

the excess capacity in large scale data centers allowed computing to be packaged and

sold in a way that was not previously feasible. One of the initial hurdles in the federal

adoption of cloud computing was the lack of a clear, widely accepted definition. For

some, cloud computing was simply any type of computing that involved the Internet.

For others it was the growth of Internet based applications such as Gmail, YouTube or

SalesForce.com. In 2009, the National Institute of Technology and Standards (NIST) began

work on standardizing the definition of cloud computing. The definition itself [83] is a
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short, two-page description of the key elements of cloud computing such as its essential

characteristics, service models and deployment models. This definition helped establish

the conceptual properties of cloud computing and gave additional support to why these

properties were distinct from other types of computing.

Figure 2.1: Usage of the phrase cloud computing

2.1.1 Cloud Service Models.

In order to facilitate discussion of cloud computing, NIST was tasked to provide a

standardized definition of cloud computing. As part of this definition [83], NIST defines

three types of service models that are characteristic of cloud service providers (CSP). A

CSP may provide service through one or more of the following service models:

Software-as-a-Service (SaaS) The capability provided to the consumer is to use the

provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through a thin client interface such as a

web browser (e.g., web-based email). The consumer does not manage or control

the underlying cloud infrastructure including network, servers, operating systems,

storage, or even individual application capabilities, with the possible exception of

limited user-specific application configuration settings.
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Platform-as-a-Service (PaaS) The capability provided to the consumer is to deploy onto

the cloud infrastructure consumer-created or acquired applications created using

programming languages and tools supported by the provider. The consumer does not

manage or control the underlying cloud infrastructure including network, servers,

operating systems, or storage, but has control over the deployed applications and

possibly application hosting environment configurations.

Infrastructure-as-a-Service (IaaS) The capability provided to the consumer is to pro-

vision processing, storage, networks, and other fundamental computing resources

where the consumer is able to deploy and run arbitrary software, which can include

operating systems and applications. The consumer does not manage or control the

underlying cloud infrastructure but has control over operating systems, storage, de-

ployed applications, and possibly limited control of select networking components

(e.g., host firewalls).

The NIST definition of cloud computing also provides the following four deployment

models:

Private Cloud The cloud infrastructure is operated solely for an organization. It may be

managed by the organization or a third party and may exist on premise or off premise.

Community Cloud The cloud infrastructure is shared by several organizations and

supports a specific community that has shared concerns (e.g., mission, security

requirements, policy, and compliance considerations). It may be managed by the

organizations or a third party and may exist on premise or off premise.

Public Cloud The cloud infrastructure is made available to the general public or a large

industry group and is owned by an organization selling cloud services.

Hybrid Cloud The cloud infrastructure is a composition of two or more clouds (private,

community, or public) that remain unique entities but are bound together by
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standardized or proprietary technology that enables data and application portability

(e.g., cloud bursting for load balancing between clouds).

Typically, the tradeoffs of choosing between deployment models are often between

cost, convenience and security. Public clouds often offer the greatest cost benefit,

but traditionally cause the most uneasiness with regards to security. The federal and

Department of Defense (DoD) strategy for cloud computing as discussed in §2.2 involve

all four deployment models [67, 100]. The purpose of this research is to look at methods

for securely adopting cloud computing using as much of the public cloud deployment

model as possible, while at the same time limiting the information available to the CSP.

By limiting the information available to the CSP, this will hopefully soften the cultural

barriers that exist for adopting cloud computing more broadly within the DoD. Attribute

based encryption techniques, such as the one presented in Chapter 4 require some type of

trusted server to perform some of the cryptographic operations. These trusted servers could

run inside a private computing cloud such as DISA’s RACE [2]. This trusted component

should represent a very small, relatively static portion of the overall processing and storage

requirements for the overall application. The bulk of processing and storage could still be

securely outsourced to public cloud computing resources. This configuration would fall

under the hybrid cloud model in the NIST definition.

2.2 Federal Use of Cloud Computing

Since 2009, the federal government has gradually taken a more aggressive approach to

cloud computing adoption. Since that time, this federal push known as the Federal Cloud

Computing Initiative (FCCI) has met with both enthusiasm and resistance. The topic of

cloud computing in the federal government is a broad topic, and in fact entire books have

been written on this specific topic [14, 78]. It seems the most common government use of

public cloud services are for public websites. Private cloud services are also being built up

using the internal resources of the various federal agencies. Using virtualization alone does
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not necessarily turn an internal data center into a private cloud. To fit the NIST definition,

these resources must be made available as an on-demand, metered service. Many federal

agencies are adopting this approach as well, using central data centers to provide cloud

services to smaller compartments within the agency. This section discusses some of the

key elements of federal adoption of cloud computing including small case studies on the

approach of the Department of the Treasury and the Department of Homeland Security.

2.2.1 Federal Data Center Consolidation Initiative.

One of the modern drivers for cloud computing, both in industry and government,

is the allure of reducing or eliminating the operating costs associated with running large

internal data centers. In 1993, then President Bill Clinton asked Vice President Al

Gore to perform an internal review of the federal government in order to determine

areas where the government could be more efficient. This review was called the

National Performance Review. This review contains a report titled Reengineering Through

Information Technology [91], that identifies “consolidating and modernizing government

data processing centers” as one of its four proposed actions. The report cites a DoD plan to

consolidate 100 data centers into 16 efficient centers.

Over the next several years, the need for information processing would continue

to drive up the number of federal data centers in operation. In 2009, another call to

action came when Federal Chief Information Officer Vivek Kundra sent a memo to all

federal agency CIOs discussing the need for data center consolidation [66]. The memo

emphasized that the number of federal data centers had grown considerably over the

previous decade (from 432 in 1998 to over 1,100 in 2009). The memo asked the CIOs

to evaluate their agencies to find ways to either reduce data center requirements either

through server virtualization or through cloud computing. This feedback led to the Federal

CIO publishing a 25 point implementation plan for the Federal Data Center Consolidation

Initiative (FDCCI) [65]. Point 3 in this plan called for a “shift to a cloud first policy”.
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This required government agencies to default to a cloud-based solution when appropriate

for all new IT deployments. These cloud solutions could leverage private government

clouds, commercial public clouds, or regional (i.e., community) clouds for state and local

governments. In order to support this cloud first policy, the Federal CIO was required to

publish a federal cloud strategy. This strategy document was published three months later

in February of 2011 [67].

The progress of the FDCCI to reduce data centers and realize cost savings of $2.4

billion by 2015 has been difficult to measure. One reason for this difficulty is that the

definition for what constitutes a data center has changed throughout the program. Initially

the Office of Management and Budget (OMB) laid out specific requirements in terms of

size, purpose and availability. For example, the data center must provide at least 500 sq

ft of floor space for equipment. The initial FDDCI memo [66] (published in February of

2010) stated that there were “more than” 1,100 federal agency data centers in 2009. The 25

Point Implementation Plan (published in December of 2010) states that there were 2,094

data centers in 2010. This would be a near doubling in the course of only a year. In

October 2011, the Federal Chief Information Officer (CIO) redefined data center to include

facilities of any size. Using this new definition, the OMB reported that there were 3,133

data centers. As agencies began applying the new definition, the number of data centers

increased dramatically. In 2013, the Government Accountability Office (GAO) reported

6,836 data centers. However, 2,200 of these “data centers” were actually server closets in

the county offices of the Department of Agriculture that typically only house a single server.

The GAO also reported that the majority of federal agencies involved in the program had

not yet submitted complete inventories or plans for consolidation. The GAO also reported

that there is no established rule for validating any cost savings estimates [40, 44].

The DoD published a review of its implementation of the FDCCI in April 2013 [39].

The DoD owns the largest number of data centers (772) than any other federal agency
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(based on definition as stated before). According to the report, the DoD planned on

reducing the number of data centers by 30% by the end of 2013 and the number of servers

by 25%. The report contains an interesting breakdown of consolidation plans by branch, as

shown in Table 2.1.

Table 2.1: Data center consolidation plans by branch

Owner Current Planned

Air Force 137 117

Army 250 154

Navy 78 77

Combatant Commands 25 21

Other 282 163

Total 772 532

Noteworthy is that the Army is listed as having the most data centers, but also plans

on reducing the most. The report states that the Army’s consolidation efforts began in 2006

and that it plans on continuing even greater reductions to only 65 data centers by 2015. So

although the effectiveness of the FDCCI at reducing the number of federal data centers is

a matter of some debate, the initiative has spurred significant interest at the federal level

in transitioning to cloud computing. It marked the beginning of a policy that put cloud

computing at the forefront in federal acquisitions of new IT systems.

2.2.2 Federal Risk and Authorization Management Program (FedRAMP).

In the spring of 2009, Federal CIO Vivek Kundra began an inter-agency program

labeled the Federal Cloud Computing Initiative [76, 78]. Coordinated through the General

Services Administration, the FCCI would bring in technical experts from various federal

agencies in order to foster the adoption of cloud computing. In September 2009, the FCCI
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was more broadly announced by Mr. Kundra in coordination with the launch of a new cloud

computing online shopping portal apps.gov [64]. Apps.gov was envisioned to be an inter-

agency shopping portal where agency CIOs could purchase pre-approved cloud computing

products quickly and easily. The goal was to move agencies away from their traditional,

stove-piped IT acquisition approaches and foster a shared approach to IT acquisition.

One barrier to this inter-agency adoption was that each agency had its own internal

processes for conducting certification and accreditation (C&A) of information systems. To

address this issue, the FCCI established the Federal Risk and Authorization Management

Program (FedRAMP). FedRAMP was designed to promote a “do once, use many times”

approach to C&A. Cloud Service Providers (CSPs) could be certified once using a

comprehensive set of C&A metrics, then the certification could be used by all federal

agencies. This would significantly reduce the burden on the federal agencies to conduct

the C&A on their own.

FedRAMP has taken some time to develop. The first formal policy memo was

published in 2011 [104]. The FedRAMP Concept of Operations was published in February

2012 [55]. Initial operating capability was expected by the end of FY12, with full

operational capability by summer of 2013. In May, 2013 there were only two certified

CSPs. As of September 2013, the number of CSPs has grown to over nine and includes

popular public CSP Amazon Web Services (AWS). So far, the focus appears to be on

certifying Infrastructure-as-a-Service (IaaS) providers as all nine certified CSPs are for

IaaS.

2.2.3 Example from Department of the Treasury.

The Department of the Treasury has been leveraging cloud computing primarily

through hosting of its public facing websites. These sites include treasury.gov,

recovery.gov, mymoney.gov, financialstability.gov, and makinghomeaffordable.gov [79].

These sites are all hosted through AWS. According to the Treasury’s FDCCI report, it was
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the first cabinet level agency to move its public facing site to the cloud where it saved over

13% in monthly costs relative to the previous hosting solution [102].

Like many federal agencies, the Treasury operates a large internal IT infrastructure

as well. In their 2011 FDCCI report [102], they reported to operate 55 data centers with

around 7,000 servers. This document also describes the Treasury’s plans to leverage private

cloud concepts with this internal infrastructure. The Treasury plans on designating a limited

set of data centers referred to as “Department Data Centers” which would provide IaaS,

PaaS and SaaS services to other internal Treasury bureaus. However, the document cites

some consolidation concerns that may delay the implementation of the plan.

One interesting exception to the consolidation approach in the Treasury plan was the

Supervisory Control and Data Acquisition (SCADA) systems of the Bureau of Engraving

and Printing (BEP) and the Mint. The BEP website, which is hosted publicly on AWS,

was recently taken offline due to an intrusion in 2010 [56]. These types of attacks often

raise the most questions regarding public cloud computing security. It is important to

recognize that these types of attacks rarely exploit any characteristic that is unique to cloud

computing. While the details of how the site was compromised are not public, the most

likely explanation is that the attack was possible through either some security vulnerability

in the website code or out of date web server software. These are both issues that would

affect a website regardless of where it is hosted. In these types of cases, it is important to

differentiate between generic IT security and cloud security [54].

2.2.4 Example from Homeland Security.

The DHS also seems to be very active in adopting both public and private cloud

computing. In October of 2011, DHS CIO Richard Spires described a variety of cloud

initiatives in a congressional testimony given to the House Subcommittee on Cybersecurity,

Infrastructure Protection, and Security Technology [97]. The testimony provides a fairly

comprehensive view of DHS adoption of federal “Cloud First” policy.
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DHS, like many other agencies, is focused primarily on the two deployment models

of public clouds and private clouds. Mr. Spires cites three examples of how DHS is

using public cloud services. The first is an identity proofing solution designed to meet

United States Citizenship and Immigration Services’ E-Verify Self Check requirement

that allows individuals and employers to check their employment eligibility status seeking

employment. Mr. Spires states that this is the first online E-Verify program to offer such

as service directly to workers. Next, DHS uses the cloud to provide Enterprise Delivery

Network (EDN) services for its public facing websites. This service is used to deliver

content for over 70% of DHS websites. Mr. Spires cites that in 2009, when several federal

agencies came under a denial-of-service attack (and DHS sites themselves experienced

over a 100 fold increase in traffic) that the cloud EDN service was able to scale and as a

result DHS sites experienced no outages. Finally, DHS plans to move additional sites to

public cloud hosted infrastructures over the next two years. These include sites from U.S.

Immigration and Customs Enforcement (ICE), United States Citizenship and Immigration

Services (USCIS), and Federal the Emergency Management Agency (FEMA).

In addition to using public cloud services, DHS also plans on building private cloud

services using its internal infrastructure. DHS plans on leveraging its two enterprise data

centers as hubs for private cloud services to its internal components. DHS components

would follow a cloud model of a pay-as-you-go system in order to use centralized services

from these data centers. Some of the cloud services that are already implemented or

currently planned include authentication, email, Sharepoint, project management and IaaS.

DHS projects a cost avoidance savings of 8-10% from utilizing these private clouds. Mr.

Spires cites security as a top concern and explains that DHS private cloud services will be

used to house unclassified but sensitive data while public clouds are used for non-sensitive

data.
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III. Pairing Based Cryptography

The purpose of this chapter is to introduce the reader to some of the fundamental

concepts used throughout this document with regards to pairing based cryptography. In

a sense, this chapter aims to guide someone who is new to the world of pairing based

cryptography through the mathematical minefield. Specifically, the goal is to convey

implementation concepts at a level that prepares the reader to understand the mathematics

presented in Chapter 4. The chapter begins by discussing some of the fundamental concepts

of number theory and abstract algebra that are used in pairing based cryptography. Then

some of the basic properties of bilinear maps and their implementations are presented. This

helps the reader better understand the implementation presented in Chapter 5 which relies

heavily on bilinear maps. Finally, some basic cryptographic concepts are presented so the

reader has a better understanding of the security properties discussed in this research. The

scope of this chapter is to briefly introduce the topics at a level so that the more formal

mathematical constructions presented in Chapter 4 are more accessible. References are

provided throughout the chapter to more established work for readers who desire a deeper

understanding of the concepts.

3.1 Mathematics Primer

The world of pairing based cryptography has many real world practical applications,

but also presents an interesting challenge to newcomers to the field. On the one hand,

pairings can be treated in the abstract as black box functions. These pairings, also known

as bilinear maps, have relatively straightforward algebraic properties that are fairly easy

to understand and apply. However, if one desired to make one of these black boxes, the

mathematical sophistication required increases significantly and one can quickly be lost

in the mathematics. Moreover, these more sophisticated concepts tend to come from the
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study of number theory, abstract algebra, and elliptic curves. These topics have a rich

(perhaps daunting) set of terminology and concepts, only which a small subset that applies

to pairings.

Even though pairings can largely be viewed as black boxes, not all pairing black

boxes behave the same way. For example in [43], the authors explain the pitfalls and

assumptions that need to be made about how these black boxes are influenced by the

underlying implementation. This implies that a user of a cryptographic library that offers

pairing support needs to understand some aspects of the underlying implementation in order

to avoid misusing the library (perhaps leading to significant security flaws).

3.1.1 Abstract Algebra.

Abstract algebra is both a broad and deep field. This section serves to briefly introduce

a few elementary concepts to help the reader understand the notation and mathematics

presented in Chapter 4. This section also forms the basic foundation needed to understand

the next section on bilinear maps. The material from this section including all definitions

and theorems is primarily derived from the lecture notes for the AFIT course MATH 631

[38] and from the book on identity based encryption by Martin [74]. The latter contains

an excellent introduction to the mathematics behind pairings. Another book by Chatterjee

[30] also provides a good review of the relevant mathematics. These accepted theorems

are presented in this section without proof, but the proofs can be found in any standard

reference text on abstract algebra such as [? ].

3.1.1.1 Notation.

Some common mathematical notation used throughout this document is presented in

Table 3.1.
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Table 3.1: Mathematical Notation

Symbol Definition

Z The integers {...,−2,−1, 0, 1, 2, ...}

Zn The integers modulo n. The modulus n typically indicates a composite

number, while p or q indicate a prime modulus.

Z∗n The non-zero elements of Zn

Fp or Fq A finite field of size p where p is prime. When q is used as the field

size, it represents q = pk where k is a positive integer. This represents an

extension field of degree k.

E(Fp) An elliptic curve defined over a finite field.

∀ “for all”. Typically used to refer to all elements of a set.

ε Used to denote a negligible function. Informally, a negligible function is

one whose inverse 1
ε

cannot be bounded by a polynomial function. See

[73] for a formal definition.

∈U Indicates that the element is sampled uniformly (i.e., randomly) from

the set.

3.1.1.2 Groups.

Groups form an important part of cryptography and are used extensively throughout

Chapter 4. A group is essentially a set of items along with a binary operation, formally

defined below:

Groups

(a) A binary operation on a set G is a function that assigns an element of G to every

pair of elements of G, that is, a function ? : G ×G 7→ G. Given a, b ∈ G, we denote

?(a, b) simply as a ? b.
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(b) A group is a set G along with a binary operation ? that has:

(i) associativity: a ? (b ? c) = (a ? b) ? c for all a, b, c ∈ G

(ii) an identity element: there exists e ∈ G such that e ? a = a = a ? e for all a ∈ G

(iii) inverses: for every a ∈ G, there exists b ∈ G such that a ? b = e = b ? a

A group is called commutative (Abelian) if we further have:

(iv) commutativity: a ? b = b ? a for all a, b ∈ G

As long as the set and the operation satisfy these properties, the set and operation are said

to form a group. There are numerous mathematical constructs that satisfy these properties.

The two that are of interest in this work are:

• The integers modulo a prime under multiplication (Z∗p)

• Points on an elliptic curve (discussed in more detail in §3.1.2)

When writing group operations, it can be convenient to borrow conventions from basic

addition and multiplication. This is called either additive or multiplicative notation respec-

tively. Take for example the following group operations:

((a ? a) ? a) ? b = a ? a ? a ? b

Note that we can drop the parentheses since group operations are associative. If we use

an additive notation (the ∼ symbol here indicates the change in formal notation to additive

notation), we use the rules of addition for combining like terms:

a ? a ? a ? b ∼ a + a + a + b = 3a + b ∼ (3a) ? b = 3a ? b
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The a terms combine and an integer coefficient is used to determine how terms have been

combined. This coefficient has higher precedence than the group operation and so the

parenthesis can still be removed. Here is the same set of operations using multiplicative

notation:

a ? a ? a ? b ∼ a ∗ a ∗ a ∗ b = a3b ∼ a3 ? b = a3b

When using multiplicative notation, the number of combined terms is represented in the

exponent. Also, unlike additive notation, the group operator often does not need to be ex-

plicitly represented since it is implied by writing terms next to each other. Traditionally,

additive notation is used only for commutative (also called Abelian) groups. Multiplica-

tive notation is used more generally, often when it is either unknown or unimportant if

the group is commutative. In this document, members of the group Z∗p are written using

multiplicative notation and points on elliptic curves are written additively.

The following are some important facts to know about groups:

For any group G:

(a) The identity element is unique: there is exactly one element 1 ∈ G (when written in

multiplicative notation) that satisfies 1 ∗ a = a = a ∗ 1 for all a ∈ G. When written in

additive notation, the identity element is 0 ∈ G such that 0 + a = a = a + 0 .

(b) Inverses are unique: for any a ∈ G, there is exactly one element b ∈ G such that

a∗b = 1 = b∗a; this element is usually denoted as a−1 when written in multiplicative

notation or as −a when written in additive notation.

(c) (a−1)−1 = a for any a ∈ G.

(d) (a ∗ b)−1 = b−1 ∗ a−1 for any a, b ∈ G.
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3.1.2 Elliptic Curves.

Elliptic curves are an important part of modern cryptography and are used as the un-

derlying implementation for the bilinear maps described in the next section. This section

briefly describes elliptic curves. For a more detailed treatment of elliptic curves and their

uses in cryptography see [15]. Elliptic curves are curves that can be written in the form:

y2 = x3 + ax + b

When elliptic curves are plotted over the real numbers, the shape of the curve is

influenced by the values of the constants a and b. The shape of the curve for various values

of a and b are shown in Figure 3.1. However, when using elliptic curves in cryptography,

elliptic curves are almost always used over a finite field. The result of plotting an elliptic

curve over a finite field is shown in Figure 3.2.

There are two aspects of elliptic curves that make them useful for doing cryptography.

First is that there is an operation in which the points of an elliptic curve form a group.

In other words, it is possible to take any two points on an elliptic curve and apply the

group operation to get another point on the same curve. This group operation fulfills all

the requirements for points on an elliptic curve to be group elements (e.g., it is associative,

there is an inverse for every element, there is an identity element). Although the group

operation is a relatively simple algorithm, it is not described here and instead the reader is

directed to [15] for details. It is noteworthy that elliptic curve points form a commutative

group, and are therefore often written additively. This is the convention followed in this

research.

The second aspect of elliptic curves that make them useful for cryptography is

that certain mathematical problems are particularly difficult to solve when using elliptic

curves. The difficulty of solving mathematical problems typically forms the basis of a
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Figure 3.1: Elliptic curves over the real numbers with different values for constants a and

b [3]

cryptographic algorithm, so when the problem is more difficult the resulting cryptographic

algorithm can often be more efficient (i.e., use smaller parameters which often leads to

better performance). In particular, the discrete logarithm problem (discussed in more

detail later in §3.3) is harder for elliptic curve groups than it is for groups such as the

multiplicative group of a finite field which is what cryptographic algorithms such as RSA

use (even though the RSA algorithm is based on the difficulty of factoring, it has been

shown that factoring reduces to solving discrete logarithms [5, 53]). Because of this,
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Figure 3.2: Elliptic curve defined over the finite field Z61 [3]

the parameters for elliptic curve group elements can be much smaller than RSA group

elements.

3.2 Bilinear Maps (Pairings)

Bilinear maps (also known as pairings) have become an important part of cryptogra-

phy, especially since their ground breaking role in solving the open problem of identity

based encryption [18] in 2001. Since that time, pairings have played a role in increasingly

more complex and expressive cryptosystems. Pairing based cryptography is something of

a dichotomy. On the one hand, the algebraic rules for pairings are relatively straightfor-

ward and easy to apply and understand. On the other hand, the implementation of pairings

requires complex mathematical concepts and algorithms.

This section on bilinear maps has two purposes. The first purpose of this section is

to demonstrate the algebraic properties of pairings so that the system presented in Chapter

4 can be understood. Secondly, this section introduces some of the issues involved with
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implementing pairings. Knowing some additional detail about how the pairings are actually

implemented will also help the reader to understand the implementation performance

details discussed in Chapter 5.

3.2.1 Pairing Types.

There are a few different ways to classify pairing implementations. One way to do

so is by classifying an implementation as either symmetric or asymmetric. A symmetric

pairing has the following form:

e : G1 ×G1 → Gt

A symmetric pairing takes two elements from the same group and maps them to an element

of the target group. An asymmetric pairing has the following form:

e : G1 ×G2 → Gt

An asymmetric pairing takes elements from two different groups and maps them to a target

group element. In both symmetric and asymmetric pairings, the order of all groups is

the same. The order of the group can either be prime or composite. Current pairing

implementations use points on an elliptic curve as the elements of G1 and G2. Gt is the

multiplicative group of a finite field.

Another popular method of classifying pairings comes from the paper by Galbraith et.

al [43]. Pairings are classified into one of three types:

Type-1: G1 = G2;

Type-2: G1 , G2 but there is an efficiently computable homomorphism φ : G2 → G1;

Type-3: G1 , G2 and there are no efficiently computable homomorphisms between G1

and G2;
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For Type-2 and Type-3 pairings, there is also no efficiently computable homomorphism

from G1 to G2 (since G1 = G2 for Type-1 pairings, there is a trivial homomorphism).

In terms of the earlier classification, a Type-1 pairing would be considered a symmetric

pairing, while Type-2 and Type-3 pairings are considered to be asymmetric. The choice of

pairing implementation can have significant impact on what types of operations can be done

and how efficient those operations will be. Some of these consequences are apparent to the

cryptographic designer; for example, a security proof may rely on the fact that there is a

homomorphism from G2 to G1 and therefore the scheme must be implemented with a Type-

2 pairing. Other consequences can be more subtle. For example it may not be possible to

hash to elements of G2, elements of G1 may be large (and therefore less efficient to compute

with), or it may even be difficult to generate parameters with high security in polynomial

time. Table 1 in [43] provides a good view of the functionality and limitations for each type

of pairing.

In practice, Type-3 pairings are considered to be the most efficient [9, 10, 21, 41, 42].

As discussed in the next section, there are pairing friendly curves that support optimally

efficient pairing algorithms at the 128-bit security level. Type-3 pairings also allow hashing

to G2, random sampling of G2, use large characteristic finite fields (which make them

immune from recent improvements [62] of discrete logarithm algorithms that require finite

fields with small characteristic), and the system parameters are efficiently computable. As

such, the research in this paper uses Type-3 pairings.

3.2.2 Pairing Algebra.

The defining characteristic of a bilinear map is of course its bilinearity. Take for

example1 the asymmetric case:

For P1,Q1 ∈ G1 and P2,Q2 ∈ G2 then:

e(P1, P2 + Q2) = e(P1, P2)e(P1,Q2) and e(P1 + Q1, P2) = e(P1, P2)e(Q1, P2).
1Note the convention used throughout this document is that the elements being paired are written using

additive notation, while the result of the pairing operation is written using multiplicative notation
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This leads to a relatively straightforward algebraic behavior. Exponents of the target

element can be brought down as coefficients to either side of the pairing (or as exponents if

the elements being paired are written using multiplicative notation). For example:

For P1 ∈ G1 and Q2 ∈ G2 then:

e(P1, 3Q2) = e(P1,Q2)3 = e(3P1,Q2)

e(3P1, 4Q2) = e(P1,Q2)3∗4 = e(P1,Q2)12 = e(4P1, 3Q2) = e(P1, 12Q2)

The example above could have been written completely in multiplicative notation by

converting each coefficient to an exponent. Note how in the example, the coefficients are

able to switch places not only with the exponent, but can be moved back down to either

inner term. This ability to move around exponents and coefficients is what makes the

bilinear map so useful for building cryptographic systems.

3.3 Cryptography

Cryptography is a diverse and complex field. This section is intended to briefly

highlight some of the key aspects of cryptography that are used in this research. For more

detailed treatment of cryptography, or of the topics listed in this section see [63, 73].

3.3.1 Semantic Security.

Semantic security is the idea that a ciphertext should leak no information about its

corresponding plaintext. One way to achieve semantic security is through perfect secrecy,

in other words through the use of a one-time pad. A one-time pad is a random bit

string that is as long as the message. The pad is used as a key by performing an XOR

operation, bit by bit, with the message to create the ciphertext. While this provides

very strong security, it becomes very impractical with large messages and maintaining

or transferring the one-time pads can become difficult. An alternative approach is to

ensure that given a ciphertext, determining information about the plaintext should be

computationally infeasible by any probabilistic, polynomial-time algorithm (PPTA). This

idea was first introduced by Goldwasser and Micali as probabilistic encryption [49].
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Goldwasser and Micali show that semantic security is equivalent to the notion of

ciphertext indistinguishability. Ciphertext indistinguishability typically takes one of two

forms, depending on the information available to an adversary. These two forms are chosen

plaintext attack (CPA) and chosen ciphertext attacks (CCA). Typically the semantic security

definition for a cryptosystem is presented in terms of a game between a challenger and an

adversary. The challenger performs any setup work and presents any public parameters

to the adversary. To model a chosen plaintext attack, the adversary is able to choose two,

equal length messages to be encrypted and submits the messages to the challenger. The

challenger picks one of the messages at random, encrypts the message and then returns

the ciphertext back to the adversary. The adversary must determine from the ciphertext

which of the two messages was chosen and makes a guess. The adversary is said to have an

negligible advantage if the guess is correct 50% of the time plus some negligible amount.

This negligible amount is usually defined mathematically as a function (represented in this

document as ε) whose inverse cannot be bounded by a polynomial. The CCA game is

very similar except that the adversary is given access to a decryption oracle, which allows

decryptions of any ciphertext the oracle is given. The adversary can use this oracle on any

ciphertext except the challenge ciphertext that is returned to it (otherwise the game would

become trivial). If the adversary is allowed to adjust its strategy based on prior decryptions,

this is called adaptive CCA (or sometimes CCA2). Non-adaptive CCA is sometimes called

CCA1. The target level of security for a public key cryptosystem is either CCA1 or CCA2

security.

3.3.2 Complexity Assumptions.

Most cryptosystems are built from the idea that certain problems in mathematics are

generally assumed to be computationally hard [75]. This means that for these problems,

there are no known efficient (i.e., polynomial time) algorithms that can solve them. Some

problems are considered to be widely studied and thus there is more confidence in the

25



validity of the assumptions. The assumptions corresponding to these problems are referred

to as standard assumptions, and cryptosystems that only require these types of assumptions

are said to be secure in the standard model. Standard model security is typically the goal for

any cryptosystem as it provides the greatest confidence in terms of security; however, this

security may often be difficult to obtain. Often, in order to prove security cryptosystems,

one must rely on stronger2 assumptions instead of weaker standard assumptions.

One way to define assumptions is through a statistical game. An algorithm is said to

have an advantage in the game if it is able to produce results that are different than random

guessing. The following is a list of a few common standard assumptions presented in this

format:

Discrete Logarithm (DL)[1]: Let G be a cyclic group with generator g. Let D be the

following distribution:

D = (G, g, gx); x ∈U Z

The DL problem to compute x ∈ Z when given D. Let A be an polynomial-time

algorithm that takes D as its input and produces as its output x̄ ∈ G. The advantage of

an algorithmA in solving the DL problem is given by:

AdvDL
A = |Pr[x = x̄← A(D)]|

The (ε, t)-DL assumption holds in G if for any adversary A running in time at most t,

AdvDL
A ≤ ε.

The discrete logarithm problem is a classical hard problem used in many cryptosystems.

It represents a class of problems where computing forward is computationally easy, but

reversing that computation is expensive. In this case, computing the discrete exponential

2With complexity assumptions, weaker assumptions assume less than strong assumptions. Therefore,
weaker assumptions are usually more desirable in terms of security than strong assumptions. It is an ironic
twist of mathematical terminology where weak is good and strong is not as good.
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gx in the problem above (i.e., computing forward) is a very efficient computation.

However, the best known algorithms for reversing this computation (i.e., taking the discrete

logarithm) are expensive. The cost of the algorithm depends on the structure of the

underlying group. For generic groups (i.e., no special structure is assumed in the structure

of the group other than those specified in the group definition), the best known algorithms

are exponential. For some groups, such as points on elliptic curves, the generic algorithms

are the most efficient that are known. For other groups, such as F∗p, then the structure of

the group can be exploited and sub-exponential (but not polynomial) algorithms are known

to exist. The security of a cryptosystem is dependent on the efficiency of these algorithms.

Therefore, groups that have more efficient algorithms (e.g., F∗p) need to be larger in order

to provide the same level of security as groups with only generic algorithms (e.g., elliptic

curve groups).

Decisional Diffie-Hellman (DDH)[1, 63]: Let G be a cyclic group with generator g. Let

z ∈U G. LetD be the following distribution:

D = (G, gx, gy); x, y ∈U Z

The DDH problem is to determine, given (D, h ∈ G) if h = gxy or if h ∈U G. LetA be

an polynomial-time algorithm that takes (D, h) as its input and produces 1 as its output

if h = gxy and 0 otherwise. The advantage of an algorithmA in solving the DL problem

is given by:

AdvDDH
A = |Pr[A(D, gxy) = 1] − Pr[A(D, z) = 1]|

The (ε, t)-DDH assumption holds in G if for any adversary A running in time at most

t, AdvDDH
A ≤ ε.

The DDH assumption is the classical decision type assumption. Many security proofs

rely on the difficulty of determining if group elements have a specific structure or if they
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are randomly sampled. All of the assumptions presented in Chapter 4 follow this pattern.

The DDH assumption is considered to be stronger than the discrete logarithm assumption,

because there are groups where the DL assumption holds and the DDH assumption does

not. One relevant example is with bilinear groups. If a symmetric pairing is known to

exist for G, then the adversary can easily determine if h = gxy. The adversary is given gx

and gy. The adversary can pair these elements and get an element m of the target group

e(gx, gy) = m. When the adversary receives h, it pairs it with g. If h = gxy, then this pairing

becomes e(g, gxy) = e(g, g)xy = e(gx, gy) = m. If h is random, then the result is not equal to

m. Thus, the adversary can guess correctly after only a single (efficient) pairing operation.

To deal with the fact that the DDH problem is easy in bilinear groups, specialized DDH

assumptions have been made specifically for pairings. An example of such an assumption is

the Decisional Bilinear Diffie-Hellman Assumption for Type-3 pairings (DBDH-3) which

is defined in Chapter 4.

3.3.3 Dual System Encryption.

When cryptosystems based on bilinear pairings were first introduced, they often relied

on a proof technique that involved random oracles [11]. Cryptosystems whose security

proofs use random oracles are said to be secure in the random oracle model. There

are known limitations to random oracles and some in the cryptographic community see

cryptosystems that rely on random oracles as being disadvantaged relative to cryptosystems

that rely on more standard assumptions. Eventually, identity based encryption systems

were built that did not rely on random oracles, but required a selective-id security model.

This selective-id model required adversaries to announce their target identity before even

seeing the public parameters. Eventually, fully secure systems in the standard model were

presented, but required large public parameters [109].

Typically to show that a system is secure, a simulator is used to play out the required

security game. Instead of being allowed to choose its own parameters, the simulator is given
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an instance of some hard problem. Often this problem is in the form of distinguishing some

element as either having a particular form or being randomly selected from the group. The

simulator must use the terms in the problem to simulate the cryptosystem (i.e., perform all

the relevant calculations for creating ciphertexts and keys). In order to achieve full security,

a more powerful approach to building the simulator was required.

A breakthrough came with the introduction of the dual system encryption method-

ology by Waters [109]. In a dual system encryption system, there are three types of

components: normal (sometimes called fully functional), semi-functional, and nominally

semi-functional. This applies to both ciphertext and keys. Table 3.2 shows which combi-

nations lead to successful decryption operations and which combinations lead to failure.

Essentially, whenever semi-functional components interact with normal components, the

decryption is successful. However, whenever two semi-functional components are used,

the decryption fails. If nominally semi-functional components are used, there is typically

some specific condition that must be met in order for decryption to be successful. This is

typically used so that the simulator cannot test if a ciphertext it is creating is semi-functional

or not. In this case, the simulator can typically create either normal or nominally semi-

functional ciphertext and can only create either normal or nominally semi-functional keys.

The simulator then cannot detect if the ciphertext is normal or (nominally) semi-functional,

since decryption will be successful in either case.

Table 3.2: Dual System Components (w/HP indicates with high probability)

Keys \ Ciphertext Normal Semi-Functional Nominally Semi-Functional

Normal X X X

Semi-Functional X Fail Fail w/HP

Nominally Semi-Functional X Fail w/HP X (if conditions are met)
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The dual system encryption strategy works by making an argument over a sequence

of games. The first game in the sequence is a real security game like those described

in §3.3.1. The last game is a game where the advantage of the adversary is known to

be negligible (e.g., the adversary’s guess is of a truly random value). The games in

the middle of the sequence are games that leverage the ability of the adversary to detect

changes of the components from normal to semi-functional to also solve some complexity

assumption (i.e., a known hard problem). For example, a game might reduce the ability of

the adversary to distinguish between normal ciphertexts and semi-functional ciphertexts to

solving DBDH-3. The use of semi-functional components allows the challenger/simulator

to answer key queries from the adversary without requiring any information up front from

the adversary (unlike the selective-id model described above). The dual system encryption

approach has been a very powerful one for building pairing based cryptosystems with full

security.
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IV. MA-AHASBE: Multi-Authority Anonymous Hierarchical

Attribute-Set Based Encryption

This chapter describes the merger of two existing pairing based cryptosystems, an

anonymous hierarchical identity based encryption (AHIBE) scheme and a ciphertext-

policy attribute-set based encryption (CP-ASBE) scheme, into a single system that

provides a very rich feature set. The new system, dubbed MA-AHASBE (Multi-Authority

Anonymous Hierarchical Attribute-Set Based Encryption), allows users to create ciphertext

that enforces an access policy, allows policies to include attributes from multiple authorities

in either a centralized or decentralized environment, allows for protected attributes that

are not disclosed in the ciphertext, and allows an authority to delegate key generation

capabilities to a hierarchy of subdomains. The system is described using asymmetric

bilinear maps over pairing friendly elliptic curves, which have been shown to be the most

efficient pairings in practice. The system is designed to support the security requirements

of a large, federated enterprise attribute based access control (ABAC).

4.1 Introduction

The introduction of pairing based cryptography ignited the imaginations of cryptogra-

phers and created a wide array of unique and interesting cryptosystems. Although pairings

had been known to cryptographers for some time in the context of cryptanalysis, the first

pairing based encryption approach was proposed in 2001 by Boneh-Franklin [18]. This new

system solved a long standing open problem proposed by Shamir [95] regarding the exis-

tence of identity based encryption (IBE) systems. In an IBE, the user’s public key is a fixed

identifier such as an email address or URL. Over time, the concepts evolved from identities

to attributes. A user could have attributes assigned to them by an authority through their

cryptographic keys and ciphertexts could be created that enforced an access policy. These
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types of systems are known as ciphertext-policy attribute based encryption (CP-ABE) sys-

tems. This chapter presents a multi-authority, anonymous, hierarchical, attribute-set based

encryption (MA-AHASBE) scheme, which is a type of CP-ABE.

MA-AHASBE was developed to fill a gap in CP-ABE systems. Many CP-ABE

systems exist and come with a variety of features which are described in more detail in the

next section. While each system presents a unique set of novel features, no single system

possesses enough total features required for a large, federated system. Two systems in

particular, Lewko-Waters anonymous hierarchical identity based encryption (LW-AHIBE)

[89] and ciphertext-policy attribute-set based encryption (CP-ASBE) [17], each provide

a powerful set of capabilities. However, they come from slightly different worlds, IBE

and CP-ABE. MA-AHASBE is essentially the bootstrapping of LW-AHIBE into an CP-

ASBE system in order to leverage the benefits of both systems. Some additional novel

machinery is added to allow attributes to originate from multiple authorities. The end

result is a CP-ABE with a rich set of features designed to support an attribute based access

control (ABAC) [82] paradigm in a large, federated enterprise system.

In the following sections, we provide background information that includes defini-

tions, requirements, and a brief review of the related work. We then describe the notation

and functions used throughout the chapter. Then we give a detailed description of the data

structures used in MA-AHASBE to represent keys and policies. This section also presents

the concepts of MA-AHASBE in an informal setting, with motivating examples. We then

give a summary of the algorithms that formally define MA-AHASBE, followed by a pro-

posed construction. We conclude with a description of the security models and security

proof, as well as some final thoughts on future work.
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4.2 Background

4.2.1 Enterprise Attribute Based Access Control Requirements.

We first discuss some requirements we argue are necessary for an attribute

based encryption (ABE) scheme to serve as an attribute based access control (ABAC)

enforcement mechanism in a large, federated, enterprise environment. These requirements

provide a common framework to discuss both the strengths and weaknesses of other

systems for supporting such an environment. It also provides insight to the areas where

MA-AHASBE helps to provide missing capability.

4.2.1.1 Definitions.

Here we provide a short list of term definitions. The ABAC and enterprise definitions

come from the NIST guidance [58] on enterprise ABAC. The domain definition is our own

contribution.

Attribute Based Access Control (ABAC) An access control method where subject re-

quests to perform operations on objects are granted or denied based on assigned

attributes of the subject, assigned attributes of the object, environment conditions,

and a set of policies that are specified in terms of those attributes and conditions.

Enterprise A collaboration or federation among entities for which information sharing is

required and managed.

Domain A hierarchical organizational unit of an enterprise entity.

4.2.1.2 Requirements.

This section briefly describes the requirements we argue are necessary for an ABE

to support enterprise level ABAC. These requirements reflect our interpretation of the

guidance provided by NIST applied to the context of ABE systems. For each requirement,

we give a definition as well as a rationale for why it is included. This list is not meant to
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be exhaustive, though it is meant to represent a minimum set of requirements that an ABE

needs in order to support an enterprise ABAC.

Multiple Authorities The system must allow attributes from cooperating, though author-

itatively distinct, authorities within a single access control policy.

Rationale: This capability allows a federated enterprise to share a common attribute

and policy infrastructure.

Hierarchical Structure The attributes in the system must belong to a hierarchical

structure that reflects the domain ownership of the attribute.

Rationale: This is necessary in order to properly determine which attributes

belong to which organizations. A large, federated organization may have thousands

of attributes that each have domain specific meanings. Allowing hierarchical

organization of these attributes is necessary in order to properly administer them.

Hierarchical Computation The computational burden of key generation and manage-

ment must primarily take place at the same domain in a hierarchy as the ownership

of the relevant attributes.

Rationale: Key generation and management may become a bottleneck for organi-

zations with hundreds of thousands of users. A system must allow for hierarchical

computation in order to distribute the workload more evenly across the enterprise.

Note that this does not prevent a domain from utilizing third party computation or

storage resources. Instead the purpose is to limit the computational dependency be-

tween domains or between enterprise entities.

Hierarchical Autonomy Each domain of the hierarchy must be able to generate arbitrary

attributes that reflect its ownership with a minimum amount of coordination with

other enterprise entities, including domains within the same entity.

Rationale: This requirement provides maximum flexibility at the ABE level to define
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the hierarchical structure of attributes. Note that this requirement applies to the

ABE, not necessarily to other factors (e.g., organization policy) that determine if

a domain should generate a particular attribute. Also this requirement reinforces the

requirement that a domain cannot generate attributes for other domains (i.e., each

attribute generated reflects the domain that owns that attribute).

Attribute Protection Policies must provide a mechanism to prevent sensitive attributes

from being disclosed to unauthorized parties.

Rationale: Often the attributes used in access policies are as sensitive as the objects

the policies are protecting. The attributes used in a policy can disclose to third

parties what type of information is being protected or may indicate its value. Some

mechanism to protect these sensitive attributes is critical to the overall security

posture of the system.

Key Revocation The system must provide a mechanism to revoke user keys that prevents

such keys from satisfying policies created after the revocation.

Rationale: This supports the common scenario of users leaving the system or losing

privileges. It is assumed that users will be able to decrypt messages created before

their key was revoked. The critical part of the requirement is that new messages will

be protected from users with revoked keys.

4.2.1.3 Features.

Here we list two features that on their own do not justify themselves as requirements,

but are useful in the comparison of systems. We consider systems that provide these

features to be more supportive of an enterprise environment than those that do not.

Compound Attributes The system should allow single attributes to be bound together

into compound attributes such that they can only be used together to satisfy a policy.

Rationale: Compound attributes correspond well to scenarios where attributes
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should only apply as a group. For example a course and a grade could be represented

by two attributes, but should be semantically bound together so that the grade cannot

be used for courses to which it is not bound. In an enterprise environment, this

often occurs when people have a combination of roles and membership such as

"Supervisor" and "Human Resources". Binding these attributes into a compound

attribute might indicate that the user is a supervisor in the Human Resources

department. Keeping them separate may indicate that the user is a supervisor

(somewhere, not necessarily of Human Resources) and a member of the Human

Resources department.

Numeric Attributes and Comparisons The system should provide a way to generate

numeric attributes and should allow policies to make numeric comparisons (e.g.,

equality, less than, greater than).

Rationale: Numeric attributes and their comparisons in policies are important in

many scenarios. Critically, this includes the ability to check timestamps as well as

numeric levels of access (e.g., distinguishing a Level 3 supervisor from a Level 5

supervisor).

4.2.2 Related Work.

A significant body of work has been done in the area of CP-ABE systems. The first

construction was given by Bethencourt et. al in [13]. Many others have followed that

provide various enhancements such as proofs in the standard model [32, 52], policy secrecy

[69, 80], and multi-authority [28, 29, 70, 72]. In [71, 108], the authors present work that use

identities in a hierarchical IBE (HIBE) as attributes in an ABE. The dual system encryption

technique was first developed by Waters [109], and has been a very important development

as it allows many systems to be proven with fewer security restrictions. In [105], the authors

extend CP-ASBE [17] to a hierarchical scheme called HASBE. However, the delegation in

HASBE is restrictive in the sense that at each level in the hierarchy, each domain can
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only restrict and cannot add to the set of attributes available to the next lower level in

the hierarchy. While proposed as a feature by the authors, we see this as a violation of

hierarchical autonomy. In HASBE, if a subdomain needs access to additional attributes

after its creation, there is a substantial cost in adding that attribute.

There has also been some recent work that uses a pairing based system to support

role based access control RBAC [111]. Attribute based access control (ABAC) can be seen

as a generalization of RBAC [58]. The authors in [111] provide a comparison of many

types of different systems including hierarchical identity based encryption, attribute based

encryption, role based encryption, and hierarchical key management. The comparison

looks very unfavorable to ABE systems, however the reality is more subtle. For example,

ABE is cited as not having constant size ciphertext or constant size keys when supporting

only one role. However, the first system proposed in [111] achieves constant size ciphertext

by limiting the encryption to a single target role. This is analogous to only having a single

attribute in a policy. Since the depth of the hierarchy in MA-AHASBE is bounded by

a constant at system setup (thus bounding the size of the attributes), ciphertext in MA-

AHASBE scales only with the number of attributes in the policy. A policy with a single

attribute (and the associated ciphertext) in MA-AHASBE is also bounded by a constant in

this case. Furthermore, key structures in MA-AHASBE scale with the number of attributes

a user possesses. So if the number of attributes assigned to a user is bound by a constant

(in this comparison the constant is 1), then key size is also constant. The authors in [111]

extend their first system by allowing multiple target roles, which forces the ciphertext to

scale with the number of roles. Finally, the decryption algorithm in both systems scales

linearly in both the number of users in the system as well as with the number of ancestor

roles (parent nodes in a role hierarchy) of the target roles. While the authors suggest this can

be mitigated since the bulk of the computation can be done without secret data (and hence
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can be securely outsourced to a third party), this seems to be overly burdensome when

deploying to enterprise environments with large numbers of users and roles (or attributes).

There has also been work applying attribute-based encryption systems and ABAC

to an enterprise messaging system called Attribute-Based Messaging (ABM) [16]. The

focus of ABM is on the authorization and delivery of email messages based on attributes,

but ABM uses a CP-ABE to provide end-to-end confidentiality. The CP-ABE used by

the authors of ABM is the system proposed in [13] and implemented using the CP-ABE

toolkit. The Bethencourt CP-ABE is similar in its delegation capability as HASBE, where

delegated keys may only generate attribute keys for a restricted subset of attributes. The

authors of [16] estimate that their implementation can handle up to 68,000 users based on

a weekly key refresh rate of one key per week. The authors note that without a more robust

key management solution, key generation for the ABE would likely become the bottleneck

for the entire system at larger scale. Since MA-AHASBE offers a more robust and flexible

key delegation mechanism, it could serve as a drop-in replacement in a system such as

ABM.

The work on MA-AHASBE relies fundamentally on three previous works. MA-

AHASBE bootstraps the AHIBE system described in [89] into an attribute-set system

described in [17]. The CCA transform described in [19] is then applied, leveraging the

capabilities of the AHIBE to be able to generate private keys for arbitrary identities. Since

the design of MA-AHASBE is heavily influenced by both CP-ASBE and LW-AHIBE, we

attempt to provide enough material in the description to make this chapter self-contained.

However, the reader who is unfamiliar with these two systems is highly encouraged to

review the cited references as they naturally provide a much more detailed motivation and

exposition.
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4.3 MA-AHASBE

4.3.1 Preliminaries and Notation.

4.3.1.1 Bilinear Pairings.

The construction for the MA-AHASBE system is described using asymmetric

pairings, also known as Type-3 pairings [43]. An asymmetric pairing is a bilinear map from

G1 × G2 to GT where all groups have prime order. A bilinear pairing e : G1 × G2 → GT

must have the following properties:

1. Bilinear: For P1,Q1 ∈ G1 and P2,Q2 ∈ G2 then:

e(P1, P2 + Q2) = e(P1, P2)e(P1,Q2) and e(P1 + Q1, P2) = e(P1, P2)e(Q1, P2).

2. Non-degenerate: If e(P1, P2) = 1T , the identity element in GT , then either P1 is the

identity of G1 or P2 is the identity of G2.

3. Efficiently computable: The function e should be efficiently computable.

Three types of pairings have been identified. Type-3 pairings have the shortest

representations and the fastest algorithms [89]. Well known examples of such pairings

exists as well as elliptic curves that support their efficient computation [35]. Such curves

are known as pairing-friendly curves [10, 41]. The term efficient is used in the informal

sense. Pairing computations on modern desktop hardware for finite fields of relevant size

for practical security typically execute on the order of milliseconds.

4.3.1.2 Notation.

For a set S, the notation x
U
←− S means that the element x is selected randomly from S

according to a uniform distribution. For two integers a, b, the notation [a, b] represents the

set {x ∈ Z : a ≤ x ≤ b}. Let G be a finite cyclic group and G× denote the set of generators

of G. Fix generators P1 ∈ G×1 and P2 ∈ G×2 . The discrete logarithm of an element Q ∈ Gi

to base Pi is written as dlogPi
Q where i = 1, 2. The notation R1 ∼ R2 indicates that

dlogP1
(R1) = dlogP2

(R2). Elements in angle brackets represented by 〈...〉 indicate a tuple
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(an ordered list of elements), while braces such as {...} represent a set. Functions used

throughout this chapter are shown in Table 4.1.

Table 4.1: Functions

Function Definition

depth(i) Returns the number of elements in the label i.

index(τ) Returns the index of the access policy node τ. The children of a node are

uniquely indexed from the set [1, nc] where nc is the number of children.

att(t) Returns the attribute assigned to a leaf node in an access policy or the

index into an array of protected attribute ciphertexts.

pindex(attr) The index in the array of protected attribute ciphertexts that represents

the attribute attr.

parent(τ) Returns the parent node in an access policy tree.

MACk(A) The result of executing a message authentication code algorithm on

input A with key k.

P(A) Similar to the policy satisfaction algorithm described in [17]. The

function takes an access policy P and a key structure A and returns a set

(possibly empty) of labels at each node that can be used to satisfy the

policy at that node.

4.3.2 MA-AHASBE Overview.

This section introduces the informal mechanics of how MA-AHASBE operates. This

work is a combination of two previous works, LW-AHIBE [89] and CP-ASBE [17]. The

goal is to leverage the identities from the AHIBE scheme as protected attributes in the

CP-ASBE scheme. Since the attributes are not fixed during system setup, MA-AHASBE

system would be considered a large universe system. This section introduces the notions
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of attributes, attribute hierarchies, policies, and key structures in the context of small,

tangible examples. This informal description is intended to provide intuition for the formal

definitions provided later in the chapter.

4.3.2.1 Decentralization.

In order to provide the ability to work with different authorities, a trusted central

authority must create a set of global parameters. The global parameters scale linearly with

the number of users in the system since they contain global identifier information for each

user. The trusted central authority can be replaced by any decentralized secure multi-party

computation (SMPC) protocol that supports finite field arithmetic and random number

generation. Furthermore, the results of the computations (global identifiers) are all made

public and no secret information from the global setup is needed for any other computations

(aside from generating more identifiers). This limits the need for the SMPC protocol to only

computations required during global setup. However, depending on the SMPC protocol

used, further considerations must be made. For example, SMPC protocols that assume a

dishonest majority of participants often cannot simultaneously support robustness to node

failure (or refusal to participate). An example is when a single party may unilaterally

halt the computation process if it chooses to stop participating in the protocol, leaving

the remaining members unable to recover. The effect on a decentralized MA-AHASBE

implementation is that there may not be enough global identifiers generated when the

protocol stops executing to support the total number of users in the system. One way

to mitigate this is to pre-generate enough global identifiers during global setup (and not

proceed with any other algorithms until global setup is complete) so that each user has a

unique identifier for the lifetime of the system. This might be a large up front computational

cost if there are a large number of users. It may also be difficult to predict a priori

either the total of number users the system will support or even the system lifetime itself.

This particular risk could be mitigated by choosing a protocol that allows fewer dishonest
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participants but provides more robustness guarantees. With less risk of the protocol halting

due to a small number of participants, members of the SMPC might then be willing to use

the system while computing the identifiers on-demand as new users join. These types of

tradeoffs along with other details on replacing the trusted central authority with an SMPC,

while important to any real world decentralized deployment, are considered orthogonal to

the principal design of MA-AHASBE and we do not address them further in this chapter.

4.3.2.2 MA-AHASBE Fundamentals.

MA-AHASBE belongs to the category of ciphertext-policy attribute based encryption

or CP-ABE and therefore has notions of attributes and policies. We begin by describing

attributes. In MA-AHASBE, attributes belong to an attribute hierarchy which is represented

as a tree. Nodes in this hierarchy belong to one of four categories: global parameter,

authority parameter, domain, and leaf. There is just one global parameter node that

represents the root of the hierarchy. The immediate children of the global root node must

be authority parameter nodes. The immediate children of the authority parameter nodes

must be domain nodes. The domains that are immediate children of authority parameter

nodes are called top level domains. Domains may have either domain or leaf nodes as

children. Nodes without any children are leaf nodes and leaf nodes must be children of

domain nodes (not global or authority parameter nodes). Attributes in MA-AHASBE are

fundamentally identities in LW-AHIBE. As with most HIBE systems, the attributes are

described as a tuple of identities. We write elements of the tuple as strings in double

quotations (e.g., "University", "Physics", or "Student") and the tuple itself within angle

brackets (e.g., 〈"University", "Physics", "Student"〉). Often when written as a tuple, the

double quotes are dropped from the individual entries (e.g., 〈University, Physics, Student〉).

The order of the elements represents a path along the attribute hierarchy. An attribute name

is fully qualified if it contains the path from a global parameter node to a leaf node. When

the context is clear, an attribute will usually be referenced by only its last few elements
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(e.g., "Intern", 〈Registrar, Fail〉). When the elements given is enough to uniquely identify

an attribute, the attribute is called inferentially qualified. Otherwise the attribute is called

partially qualified. For example, in Figure 4.1, "Student" is partially qualified since it

could refer to the attribute in either the "Physics" or "Electrical Engineering" domain. The

attribute references 〈Physics, Student〉 or "Intern" are inferentially qualified.

global parameters

G1

A1

University

Physics

PHY220

PHY440

Student

TA Professor

Electrical
Engineering

ENG321

Student

TA Professor

Registrar

Pass Fail Audit

A2

Corporation

Internship
Program

Intern Mentor

Human
Resources

Supervisor

A3

Government

Programs

Sparky

General
Access

Special
Access

Boom

General
Access

Special
Access

Employee

Authority Parameters

(Top Level) Domain

Normal Attribute

Protected Attribute

Figure 4.1: Full Attribute Chart

We use the example shown in Figure 4.1 throughout this section which represents a

hierarchy of attributes. In Figure 4.1, there are three authority parameter nodes that each

share the same global parameter root node. In MA-AHASBE, each global and authority

parameter node is uniquely identifiable (in Figure 4.1 the global identifier is G1 and the

authority identifiers are A1, A2 and A3). Each authority parameter node represents an

authority in the system. Examples of domain nodes include "University" (a top level

domain), "Registrar", "Programs", and "Sparky". Note that domains can have other domain

nodes as children. A domain is also referred to as a subdomain of its parent. In the

example, "Government" is a subdomain of the authority parameter node A3, and "Sparky"
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is a subdomain of "Programs". The depth of the hierarchy is defined to be the length of

the longest path from an authority parameter node to a leaf node. For example, the depth

of the hierarchy shown in Figure 4.1 is 4 (see for example the path 〈A3, "Government",

"Programs", "Sparky", "General Access"〉). Finally, Figure 4.1 shows a special type of leaf

node called a protected node. These nodes are used when the attribute itself is sensitive to

disclosure and will be discussed in greater detail next when we discuss policies.

Policies in MA-AHASBE follow the same mechanics as those in CP-ASBE. The

policy is a tree of policy nodes where each leaf node represents an attribute and each non-

leaf node acts as a threshold node. The threshold indicates how many children nodes must

be satisfied in order to satisfy that particular node’s policy. The threshold t is a value in the

range [1, nc] where nc is the number of children nodes. A threshold of 1 is equivalent to

an OR operation and a threshold equal to nc is equivalent to an AND operation. The most

straightforward policies are those where all the attributes come from the same domain.

Such a policy is shown in Figure 4.2.

G1

1

A1

1

〈University, Physics〉
2

PHY220 1

Student TA Professor

Figure 4.2: Example policy with attributes from a single domain

44



Policies consist of four types of nodes that play similar (though not identical) roles

as attribute hierarchy nodes. They are global, authority, domain, and leaf. Policies can

contain multiple global nodes, however, there is typically only one. All global nodes must

all have the same label, though they can have different threshold values. The immediate

children of global nodes must be either global nodes or authority nodes. Authority nodes

are labeled according to their corresponding identifier in the attribute hierarchy. The

immediate children of authority nodes are domain nodes. In contrast to the domain nodes

in an attribute hierarchy, domain nodes in policies are inferentially qualified references

(implicitly prepended with the label of their authority node parent) beginning with a top

level domain and ending with the domain that contains the relevant attributes. Finally,

leaf nodes represent attributes. In order to satisfy the policy such as the one shown in

Figure 4.2, a user must present attribute keys that satisfy each node starting from the leaf

nodes and proceeding up the policy to the root node. A leaf node is satisfied if the owner

possesses a key for that attribute. Note that in Figure 4.2, since the domain is inferentially

qualified, the attribute names have been abbreviated since their lineage in the hierarchy can

also be inferred. The policy node named "Student" in Figure 4.2 would correspond to the

attribute 〈G1, A1, University, Physics, Student〉 (and not the similarly named attribute 〈G1,

A1, University, Electrical Engineering, Student〉 from Figure 4.1). In Figure 4.2, we see

that the user only needs to satisfy one of the policy nodes "Student", "TA", or "Professor".

This is an example of the OR operation, since possession of only a single attribute satisfied

the threshold requirements. By meeting this threshold, the policy node labeled "1" is now

satisfied. The domain node labeled "〈University, Physics〉" however requires both of its

children to be satisfied. The right child "1" provides one satisfied child node. In order to

meet the threshold of two, the user must also satisfy the node labeled "PHY220". The user

must of course have a key corresponding to the attribute 〈University, Physics, PHY220〉

in order to satisfy this node. If this is the case, then the "Physics" node is satisfied. The
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authority node "A1" and the root node "G1" are then satisfied in turn since each only has a

threshold of one. Once the root node is satisfied, the policy corresponding to the tree is also

considered satisfied. A formal description of the policy satisfaction algorithm P(A) can be

found in [17].

In MA-AHASBE, the access policy is explicitly bundled in plaintext with the

ciphertext. This is necessary because the structure of the ciphertext mirrors the structure

found in the policy, so the decrypting party must have access to the policy in plaintext in

order to determine which keys to apply to which locations. For many use cases, this is not

a problem since the access policy itself is often not sensitive information. However, it may

be the case that certain attributes are sensitive and should not be made public.

G1
1

A3

1

〈Government, Programs, Sparky〉
1

General
Access

Special
Access

Figure 4.3: Example policy with a protected attribute

Consider the policy shown in Figure 4.3. This enforces a policy where the user must

have either the "General Access" or "Special Access" attributes. Here, the knowledge

that a "Special Access" attribute exists under the domain "Sparky" is considered sensitive.

The attribute 〈Government, Programs, Sparky, Special Access〉 should not be allowed in

plaintext policies. MA-AHASBE deals with this issue in one of two ways depending on

the nature of the protected attribute. The first case applies when the protected attribute can
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itself be protected under a policy which does not contain sensitive attributes. For example,

perhaps any user with the attribute 〈Corporation, Human Resources, Supervisor〉, which

is not sensitive, is allowed to know about the "Special Access" attribute for the Sparky

program (even if they don’t actually possess the "Special Access" attribute). This can be

done by creating another ciphertext that encrypts the plaintext "〈Government, Programs,

Sparky, Special Access〉" under a policy that does not have any protected nodes (in the

example just given, this policy would require the "Supervisor" attribute). A reference can

then be made to this ciphertext from the position of the protected node in the original policy.

We call the referenced policy an explicitly referenced protection policy. During decryption,

if the user satisfies the reference policy they can then determine the name of the original

protected attribute, thereby recovering the original policy.

This technique for protecting attributes is not, for lack of better words, entirely

satisfying. It is not difficult to imagine a scenario where a sensitive attribute cannot be

protected through only attributes which are not sensitive. For example, perhaps only users

who possess the "Special Access" attribute are allowed to know about the attribute "Special

Access". To address this challenge, we fall back on the anonymity property of LW-AHIBE.

For a formal definition of anonymity in LW-AHIBE, see [89]. Informally, anonymity in

LW-AHIBE means that a ciphertext does not reveal any information about the identity

used to create it, except potentially to a user who possesses the private key for the relevant

identity. This latter caveat is necessary since a user in possession of the appropriate

key could simply attempt to decrypt and determine if the result contained meaningful

information. We leverage anonymity by initially proceeding in a manner similar to the

method described above. However, instead of creating a regular ciphertext, a ciphertext

is created based on a fixed, single attribute policy. This policy contains only the protected

attribute, and the plaintext message contains some type of readily identifiable message such

as a numeric index or a cryptographic hash of the attribute name. Note that for this reference
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ciphertext, the plaintext used to create the ciphertext is not what is being protected, but

rather the policy (and therefore the attribute) used to create it. Now, instead of explicitly

including this fixed, single attribute policy with the ciphertext, it is not included at all.

Rather it is implied through the fact that the only way to determine the attribute used in the

policy (which recall are really identities in LW-AHIBE) is to perform a decryption using

the appropriate attribute key. We call this type of policy an implicitly referenced protection

policy.

Protecting attributes by using implicitly referenced protection policies creates an

additional computational cost to the decrypting party. The scenario is not too different from

having a key ring full of labeled keys and a number of unmarked locked doors. Without

knowing which key goes to which door, the user has to try each key with each door until

a match is found. If a match is found, we can now label the door according to the label

of the key that unlocks it. In MA-AHASBE, the keys are the attributes the user possesses,

and the doors are the protected attributes in a policy (protected through implicit protection

policies). The time required to attempt to decrypt a single protected attribute with a single

attribute key is O(1). The policy tree has a fixed size (it only contains one attribute) and a

single attempt to decrypt can immediately be determined to be successful or not (with high

probability) since the recovered plaintext should have some clear meaning. Each attempt

also only uses a single attribute key (since only one key is necessary to satisfy the policy).

If there are m protected attributes in a policy and the user possesses n keys, the total number

of attempts is O(m ∗ n). This could still be impractical depending on the constants (e.g.,

time required per attempt, m, n), though we expect that in practical usage the number of

protected attributes in a policy (m < 10) and number of total keys (n < 100) to be relatively

small. It is important to note that this key discovery process is distinct from and occurs

before the regular decryption algorithm. This technique is admittedly not as elegant as other

attribute protection mechanisms such as those found in inner product type systems [69].
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However, we feel that the other aspects of MA-AHASBE make it a better overall fit for the

enterprise requirements discussed earlier and that the performance of protecting attributes

this way is still within the limits of practicality. Note that this additional computation is

not incurred when attributes are protected using explicitly referenced protection policies.

In that case, the original policy is recovered (or determined to be irrecoverable) in a direct

manner that does not depend on the number of keys or the number of protected attributes.

4.3.2.3 Key Structures, Attribute Sets and Multiple Domain Policies.

So far we have only discussed the most straightforward use of attributes in MA-

AHASBE, single attributes from a single domain. MA-AHASBE also supports compound

attributes in the form of attribute sets, and the capability to mix and match attributes

from multiple domains and multiple authorities within the same policy. As the leaves of

the policy inherit their design from LW-AHIBE, the methodology for combining policy

nodes to satisfy a policy is inspired by CP-ASBE. The reader unfamiliar with CP-ASBE

is encouraged to review [17] for a more detailed exposition of its merits. Essentially, CP-

ASBE offers the capability to combine singleton attributes into compound attributes, while

giving the encrypting party the choice of allowing such compound attributes to be split

back apart in order to satisfy the policy. This becomes useful for representing complex

attributes that naturally occur in access control policies, but are difficult to implement as

singletons. Also it provides a rather elegant way of allowing numerical attributes with

numerical comparisons in policies. Finally, it also allows for an efficient key revocation

methodology.

Attribute sets work by combining attributes keys into recursive sets. These recursive

sets are called key structures. A key structure is issued to a specific user by a domain.

Most commonly, it only contains attributes from the issuing domain, however it may

contain attributes from other domains within the same authority. Each user in the system is

associated with a global identifier. This identifier allows multiple authorities and domains
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〈Authority,Domain, ID1〉

A[ε]

A B C A[1]

D E A[1,1]

F G

A[2]

H I J

Figure 4.4: Example key structure

to issue keys to a single user. It also prevents users with different identifiers from colluding

to satisfy policies they could not satisfy on their own. When a user possesses key structures

from multiple domains, the set is called a key ring. An example key structure is shown in

Figure 4.4. Here we see that it is a tree structure with three types of nodes: a root node, leaf

nodes and set nodes. The root node indicates the authority and domain that generated the

structure as well as the global identifier associated with the key structure. The child of the

root node is a set node. Set nodes can have as children either leaf nodes or set nodes, while

leaf nodes have no children. In addition the set nodes have been labeled in a particular way.

The label [ε] represents an empty label and the root set node (the child of the root node) is

given the empty label. Then the set nodes that share a parent are numbered starting with 1.

This number is then appended to the label of the parent to form the label of the child. The

leaf node children of a set node implicitly belong to a set whose label is made by appending

0 to the label of the parent set node. This special set is called an outer set. For example, in

Figure 4.4 the leaf nodes {A, B, C} belong to an outer set A[0] and {F, G} belong to A[1,1,0].

Finally, the depth of a set is determined by the number of elements in its label, ignoring

any final zero entries. For example, both A[ε] and A[0] have depth 0, A[1] has depth 1, and

A[1,1,0] has depth 2.
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By default, a policy in MA-AHASBE can only be satisfied with leaf node children of

a particular set node. In other words, all the attributes used to satisfy a policy must belong

to the same outer set. This is what enables single attributes to form compound attributes.

For example, in Figure 4.4 the attributes D and E form a compound attribute. In this case,

without any other conditions, a user with the key structure shown in Figure 4.4 could not

satisfy a policy that required both A and D since they belong to different outer sets. On the

other hand, the same user could satisfy a policy that only required A or only required D.

The user could also satisfy a policy that required both D and E, since they both belong to the

same outer set. In this way, outer sets like {A, B, C} or {H, I, J} form compound attributes

that can only be used together and cannot by default be mixed and matched piecemeal with

other compound attributes. In a sense this can be seen as a generalization of traditional

attribute based encryption systems. In that case, all of the attributes in the system belong

to the top most outer set (i.e., they form one large compound attribute).

One way to visualize the policy satisfaction algorithm is to imagine assigning the

label of the outer set used to satisfy any particular leaf node to that leaf node. Threshold

nodes can only combine children nodes that have been satisfied with the same label. While

this certainly prevents mixing singleton attributes that belong to compound attributes, it

also prevents multiple compound attributes from being used in the same policy. Figure

4.5(a) shows a policy that uses attributes from different sets. Assuming the key structure

in Figure 4.4, the user can satisfy either the left branch or the right branch, but not both.

This is because the label of the left node (in this case [0] since the attributes that satisfy

the relevant leaf nodes come from the outer set A[0]) does not match the label of the right

child node (which is [1,0] from the outer set A[1,0]). For the policy in Figure 4.5(a), it is not

required to satisfy both. However, if the root node threshold was changed to 2 as in Figure

4.5(b) the policy cannot be satisfied with the key structure in Figure 4.4.
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Figure 4.5: Example policies with translation nodes

Attribute sets also allow policies to control how compound attributes can be combined

with each other. The mechanism for this control is called a translation node. Translation

nodes allow users to translate attributes in their key structures from one depth to another.

Figure 4.5(c) shows how a translation node might look in a policy. The translation nodes

have been labeled "1 → 0". This means that if the child node of the translation node was

satisfied using an outer set at depth 1, the translation node is considered to be satisfied by

the label of the parent of that outer set which itself is at depth 0. For an example we use the

policy Figure 4.5(c) and the key structure in Figure 4.4. Here, the leaf node "D" can only

be satisfied by the outer set A[1,0] which has depth 1. The translation node translates the

label of this outer set to its parent which is A[0]. The translation node now can be combined

with other nodes that have been satisfied with A[0] such as "A", "B" and "C". The same

process applies to "E". The policy in Figure 4.5(c) represents how a compound attribute

can be split back into singletons and combined with other attributes. Figure 4.5(d) gives

an example of using multiple compound attributes within the same policy, but not allowing

the compound attributes to be split apart. Note that the threshold has to be met first, and

then the result is translated. Unlike the policy in Figure 4.5(b), the policy in Figure 4.5(d)

can be satisfied by the key structure in Figure 4.4.
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Figure 4.6: Example policy with multiple authorities and domains
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Figure 4.7: Example key ring
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To see an example of how attribute sets can be utilized with multiple authorities and

domains, we take an additional example from Figure 4.1. Say that we want to create a

policy that restricts access to those interns in Corporation’s Internship Program who have

passed PHY220 and have either passed or audited ENG321. Such a policy is shown in

Figure 4.6 and a key ring that will satisfy this policy is shown in Figure 4.7. The key

ring shows that the attributes for the course have been combined into an attribute set. This

makes it so that a policy can be created that prevents a user from applying a 〈Pass〉 attribute

from one course to another. For the policy, we include an extra translation node beneath

two of the domains. In a multiple domain policy, each domain node must have a label of

depth 0 in order to combine with other domains. Since the 〈Intern〉 attribute is already at

depth 0 in the key ring, it does not require a translation node.

4.3.3 Algorithm Summary.

The following algorithms define a multi-authority, hierarchical, attribute-set based

encryption system:

GlobalSetup(λ, nuser)→ GP The global setup algorithm takes in a security parameter

λ and the number of users nuser the system must support. It outputs the public global

parameters GP for the system.

AuthoritySetup(GP)→ MS KA, APA Each authority runs the authority setup algorithm

with the global parameters GP and produces a master secret key MS KA and some

public authority parameters APA for an authority A.

DomainKeyGeneration(GP, MS KA, APA, IDdomain = 〈id1, ..., id`〉, h′)→ DS K or⊥ An

authority can create domains that may in turn create further subdomains or issue user

secret keys (US K). The term h′ determines how many levels of delegation are al-

lowed by the key. Domain names are represented as a tuple of identities correspond-

ing to a path in an attribute hierarchy where id1 represents a top level domain.
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Delegate(GP, DS K or US K, APA, IDdomain orIDattr = 〈id1, ..., id`〉, id`+1, h′)→

DS K or US K or⊥ When used with a DS K and IDdomain as input, this algorithm

outputs the DS K for a subdomain. The term h′ determines how many levels of

delegation are allowed by the key. When used with a US K and IDattr as input, the

algorithm outputs another US K that represents an attribute that has been extended

one level to a commitment value created during encryption.

UserKeyGeneration(GP, DS K, A, IDuser)→ US K This takes as input a domain’s

secret key, a unique global identifier for a user, and the key structure for that user

A (i.e., the attributes that have been assigned to them) and generates a user secret

key.

Encrypt(GP, {APA, APB, ...}, M)→ CT This encrypts a messageM under an access

policy P with attributes controlled by authorities {A, B, ...}.

Decrypt(GP, CT , US K)→M or⊥ Decrypts a ciphertext and produces a message if

the decryption is successful. If decryption is not successful, it returns the special

symbol ⊥.

4.4 MA-AHASBE Construction

GlobalSetup(λ, nuser) → GP Let G1, G2 and GT be groups of the same prime order

p. Let e : G1 × G2 → GT be an asymmetric bilinear map. Let IDuser = 〈iduser〉

where iduser ∈ Zp. Choose random generators P1 ∈ G1 and F2,Qid,Uid ∈ G2. Let

Hid(IDuser) = iduserQid + Uid. The parameter nuser is the total number of users in the

system that require a globally unique identifier. Let {IDuser: j} j∈[1,nuser] be the set of all

user identifiers in the system. Note that Qid and Uid are fixed and that the number of

elements in {IDuser: j} is nuser. Let rmax denote the maximum recursion depth for the

CP-ASBE. Choose αg, βid, {βi}i∈[0,rmax]
U
←− Z∗p. If the global authority needs to generate

additional identifiers after setup, then it must retain the global secret key GS K. Let
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H : {0, 1}∗ → {0, 1}λ be a cryptographic hash function. Let h : {0, 1}∗ → {0, 1}λ be a hash

function from a family of pairwise independent hash functions. If λ = 128, then per the

analysis in [19] the size of the input space of h should be 448 bits.

GP: (p, e,H , h, P1, F2, βidP1, −αg

β0
F2, {βiP1,

1
βi

F2}i∈[0,rmax], e(P1, F2)αg

{IDuser: j
U
←− Zp,Hid(IDuser: j), 1

β0
Hid(IDuser: j),

−αg

β0
Hid(IDuser: j),

αg

βid
Hid(IDuser: j)} j∈[1,nuser])

GS K: ( 1
β0
,
−αg

β0
,
αg

βid
,Qid,Uid)

AuthoritySetup(GP)→ MS KA, APA Let hmax denote the maximum depth of the dele-

gation hierarchy. Choose a random generator P2 ∈ G2; elements {Q1, j} j∈[1,hmax],U1
U
←− G1

and{Q2, j} j∈[1,hmax],U2
U
←− G2 such that (Q1, j ∼ Q2, j) j∈[1,hmax] and U1 ∼ U2. Choose αA, a, v,

v′
U
←− Z∗p. Set V2 = vF2, V ′2 = v′F2 and τ = v + av′ so that τF2 = V2 + aV ′2.

APA: (aP1, τP1, U1, aU1, τU1, {Q1, j, aQ1, j, τQ1, j} j∈[1,hmax], V2, V ′2, e(P1, P2)αA)

MS KA: (αAP2, {Q2, j} j∈[1,hmax], U2)

DomainKeyGeneration(GP, MS KA, APA, IDdomain = 〈id1, ..., id`〉, h′)→ DS K or⊥ If

h′ < [` + 2, hmax − 2], then return ⊥. Otherwise, choose w1, w2, r1, r2, r3, r4, (z1, j,

z2, j) j∈[`+1,h′]
U
←− Z∗p. LetH2(IDdomain) = (

∑̀
j=1

id jQ2, j) + U2.

DS Kdomain:

K1,1 = w1P2 + r1V2, K1,2 = r1V ′2, K1,3 = r1F2

K2,1 = αAP2 + w1H2(IDdomain) + r2V2, K2,2 = r2V ′2, K2,3 = r2F2

J1,1 = w2P2 + r3V2, J1,2 = r3V ′2, J1,3 = r3F2

J2,1 = w2H2(IDdomain) + r4V2, J2,2 = r4V ′2, J2,3 = r4F2

For j ∈ [` + 1, h′]

D j,1 = w1Q2, j + z1, jV2, D j,2 = z1, jV ′2, D j,3 = z1, jF2

E j,1 = w2Q2, j + z2, jV2, E j,2 = z2, jV ′2, E j,3 = z2, jF2
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Delegate(GP, DS Kdomain or US K, APA, IDdomain orIDattr = 〈id1, ..., id`〉, id`+1, h′)→

DS K or US K or⊥ If h′ < [`+ 1, hmax], then return ⊥. Otherwise, choose w′1, w′2, r′1, r′2,

r′3, r′4, (z′1, j, z′2, j) j∈[`+2,h′]
U
←− Z∗p. Note that the algorithm performs the same operations for

both DS K and US K inputs. For DS Kdomain input, the output is DS Ksubdomain. For US K

input, the output is US Kid`+1 .

DS Ksubdomain or US Kid`+1:

K1,1 ← K1,1 + w′1J1,1 + r′1V2 K2,1 ← K2,1 + id`+1D`+1,1 + w′1(J2,1 + id`+1E`+1,1) + r′2V2

K1,2 ← K1,2 + w′1J1,2 + r′1V ′2 K2,2 ← K2,2 + id`+1D`+1,2 + w′1(J2,2 + id`+1E`+1,2) + r′2V ′2

K1,3 ← K1,3 + w′1J1,3 + r′1F2 K2,3 ← K2,3 + id`+1D`+1,3 + w′1(J2,3 + id`+1E`+1,3) + r′2F2

J1,1 ← w′2J1,1 + r′3V2 J2,1 ← w′2(J2,1 + id`+1E`+1,1) + r′4V2

J1,2 ← w′2J1,2 + r′3V ′2 J2,2 ← w′2(J2,2 + id`+1E`+1,2) + r′4V ′2

J1,3 ← w′2J1,3 + r′3F2 J2,3 ← w′2(J2,3 + id`+1E`+1,3) + r′4F2

For j ∈ [` + 2, h′]

D j,1 ← D j,1 +w′1E j,1 +z′1, jV2 D j,2 ← D j,2 +w′1E j,2 +z′1, jV
′
2 D j,3 ← D j,3 +w′1E j,3 +

z′1, jF2

E j,1 ← w′2E j,1 + z′2, jV2 E j,2 ← w′2E j,2 + z′2, jV
′
2 E j,3 ← w′2E j,3 + z′1, jF2

UserKeyGeneration(GP, DS K, A, IDuser) → US K Here, A is the key structure is-

sued by a domain with IDdomain = 〈id1,...,id`〉 for a user with a global identifier IDuser =

〈iduser〉. A key structure contains a number of recursive sets, each set associated with a re-

cursive depth. A set in A is labeled with an integer tuple i, where the number of elements

in i corresponds to the recursive depth of the set and each element of i comes from the set

[0,∞). The tuple i is called the label for the set Ai. The notation Aauthority,domain,user,i fully

qualifies a recursive set in the system, though we generally omit all but the tuple portion

for convenience and use the simpler notation Ai when the context is clear. The notation

Ai′‖ j represents the set Ai where i is the concatenation of i′ and the integer j ∈ [0,∞).
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At each recursive depth d, there is at least one (possibly empty) set Ai′‖0 where d is the

number of elements in i′. This set is referred to as the outer set at depth d. The outer set

Ai′‖0 contains nk ≥ 0 number of attributes such that Ai′‖0 = {attri,k}k∈[1,nk]. Note that A[0] is

the outer set at depth 0, and therefore the outer set for all of Aauthority,domain,user. An outer

set can only contain attributes and cannot contain other sets (i.e., the outer set itself is not

recursive). This means there are no labels where the last two elements are both 0.

To generate a user key, ∀Ai ∈ Aauthority,domain,user, ∀attr ∈ Ai the algorithm calls

Delegate(DS K, APA, IDdomain, id`+1 = attr, ` + 2) and stores the result in K′i,attr =

{K′γ,δ, J
′
γ,δ,D

′
`+2,δ, E

′
`+2,δ}γ∈[1,2],δ∈[1,3]. Then the algorithm chooses {ri

U
←− Z∗p}∀Ai∈Aauthority,domain,user

with the restriction that ∀ri′‖ j such that j , 0 that ri′‖ j = ri′‖ j‖0. The algorithm then runs

the RestrictToUser(K′i,attr, IDuser, ri) algorithm described below and stores the result in

Ki,attr,user. Let Ki,user = {Ki,attr,user}∀attr∈Ai .

RestrictToUser(K′i,attr, IDuser, ri)→ Ki,attr,user

∀K′γ,δ ∈ K′i,attr : Kγ,δ ←


K′γ,δ if γ , 2, δ , 1

K′2,1 + riF2 + r[0]Hid(IDuser) if γ = 2, δ = 1
∀J′γ,δ ∈ K′i,attr : Jγ,δ ← J′γ,δ

∀D′`+2,δ ∈ K
′
i,attr : D`+2,δ ← D′`+2,δ

∀E′`+2,δ ∈ K
′
i,attr : E`+2,δ ← E′`+2,δ

Essentially, RestrictToUser appends two additional components onto the K2,1 portion

of the key in the input set. These two elements are critical in that they create additional

blinding factors during decryption that provide certain security protections. How these

elements work will be described in more detail in the decryption algorithm. The value ri

acts as a label for the attribute set. The method described here requires that the attributes

being combined into a set originate from the same domain. This can be extended to
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other domains within the same authority (but not domains from different authorities) if

domains are willing to share these labels. The details of this extension are not described

in this chapter. Finally, the user key US K is defined as follows:

US K:

∀Ai ∈ Aauthority,domain,user: (Ai,Ki,user)

Kid =
αg

βid
Hid(IDuser)

KF2,[0] =
−αg+r[0]

β0
F2, Kid,[0] =

−αg+r[0]

β0
Hid(IDuser)

∀ri‖ j such that j , 0, let d = depth(i ‖ j) where d ≥ 1

KF2,i‖ j =
−ri‖0+ri‖ j

βd
F2

Encrypt(GP, {APA, APB, ...}, M) → CT The general mechanism for generating each

node is very similar to the CP-ASBE system. The primary difference is that the generated

ciphertext reflects the multi-authority and AHIBE enhancements to the underlying sys-

tems. To support multiple authorities, we introduce the notion of global nodes. Global

nodes can be either global threshold or global leaf nodes. A global leaf node marks the

root of a subtree where all the nodes in the subtree belong to a single authority. Global

leaf nodes also act as threshold nodes, and therefore have an associated threshold value.

Global threshold nodes work in the same way as local threshold nodes, except that the

children of a global threshold node must be global (either leaf or threshold) and the par-

ent must be a global threshold node (or no parent in the case of the global root node).

Also, we introduce the notion of a domain threshold node. When a policy contains leaf

nodes from different domains within the same authority, there must be a threshold node

such that all nodes in the associated subtree all come from the same domain. Since a

global leaf acts as threshold node, a global leaf node can fulfill the role of the domain

threshold node in the case where the policy only uses a single domain from the relevant

authority. Otherwise, an additional local threshold node must be in the policy to act as
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the domain threshold node. When this additional node is required, then it is always the

child of a global leaf node. The children of a domain threshold node are either local leaf

or local threshold nodes.

The encryption begins in a top down manner, starting with a global root node. At

each node, a polynomial qτ is generated for all nodes (global and local) and a similar

polynomial gτ is generated for all global nodes. For each threshold node τ in the tree, the

degree dτ of both polynomials qτ and gτ are set to be one less than the threshold value

kτ (i.e. dτ = kτ − 1). The degree of a local leaf node is 0. For the global root node

R, the algorithm chooses a random s
U
←− Z∗p and sets qR(0) = s and gR(0) = 1. From

this point onward, all calculations for both qτ and gτ are performed in the exact same

manner. The only difference would be that the root values for q and g are different (s

and 1 respectively). The calculations are explained in terms of q. The algorithm chooses

dR other points randomly to define the polynomial qR. For any other threshold node τ,

it sets qτ(0) = qparent(τ)(index(τ)) and chooses dτ other points randomly to completely

define qτ. Here parent(τ) represents the parent node of τ. Let W represent the global

leaf nodes of the access tree. Y represents the local leaf nodes, and X represents local

translation nodes. Tτ represents the translation indices that are allowed at a translation

node. Their use will be explained in the decryption algorithm. Let V represent the set of

domain threshold nodes.

Let Ap indicate the set of attributes that the encryptor wishes to keep anonymous

and let np represent the number of attributes in Ap. The function pindex(attr) returns a

unique index from [1, np] for each attribute in Ap. The algorithm AttributeEncrypt is

the same algorithm as Encrypt with a fixed access policy of a single attribute. Also, for

AttributeEncrypt the access policy is not included in the resulting ciphertext.

Let |GT |` be the number of bits required to represent an element of GT . Let m ←

{0, 1}m` be the input message. Choose x
U
←− {0, 1}x` such that m` + x` ≤ |GT |`. If the
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message is a symmetric key (or the seed of a pseudorandom number generator), the rec-

ommended values [19] for 128-bit security are m` = 128, x` = 448. Let k′
U
←− GT . Let

[{0, 1}∗]n represent the first n bits of the underlying bit string. The ‖ symbol indicates

concatenation. The attribute attrcom represents the identity tuple 〈IDdomain, id`+1 = attr,

id`+2 = H(x)〉. Let H1(ID = 〈id1,...,id`〉) = (
∑̀
j=1

id jQ1, j) + U1. Now we can define the

ciphertext CT = (CTcom,CT,CTtag) as follows:

CT :

P,Cid = sβidP1,Cσ = [k′]m`+x` ⊕ (m ‖ x)

∀v ∈ V : Cv = qv(0)β0P1

∀x ∈ X,∀d ∈ Tx : C′x,d = qx(0)βdP1

∀w ∈W : Cw = (k′ · e(P1, F2)αg s)gw(0)e(P1, P2)αAqw(0)

∀y ∈ Y : Cy,1,1 = qy(0)H1(attrcom), Cy,1,2 = aqy(0)H1(attrcom), Cy,1,3 = −τqy(0)H1(attrcom)

Cy,2,1 = qy(0)P1, Cy,1,2 = aqy(0)P1, Cy,1,3 = −τqy(0)P1

Py =


attr if attr < Ap

pindex(attr) if attr ∈ Ap

∀attr ∈ Ap : Ppindex(attr) = AttributeEncrypt(GP, APA,M = pindex(attr), P = attr))

CTcom = H(x), CTtag = MACk(CT ) where k = h(x)

Decrypt(GP, CT , US K)→ M or⊥ The decryption process again follows a very sim-

ilar path as the decryption process for CP-ASBE. First, the policy satisfaction algorithm

P(A) is run to determine if the policy associated with the ciphertext is satisfied by the

key structure provided in the user key. If the algorithm succeeds, it returns a set of labels

on the root node that can be used to satisfy the policy. Otherwise the algorithm returns

the empty set and the ciphertext cannot be decrypted. If the policy satisfaction algorithm

succeeds, the decryption algorithm picks one of the labels i from the set returned byP(A)

and calls a recursive function DecryptNode(CT,US K, t, i) on the root node of the tree.
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If t ∈ Y (i.e., t is a local leaf node), then DecryptNode is defined as follows. If

att(t) , pindex(attr) and att(t) < Ai where Ai ∈ Adomain,user then return ⊥. If att(t) =

pindex(attr), then the attribute is protected and must be recovered. This is done by

iteratively attempting to decrypt Ppindex(attr) until a key is found that results in M =

pindex(attr). This is an O(npm) operation where np is the number of protected attributes

in the policy and m is the number of keys the user possesses. Once the appropriate key

is found, it is used for the remaining decryption steps. If the attribute is not protected

then att(t) = attr ∈ Ai where Ai ∈ Adomain,user and the decryption key is the associated

Ki,user. Let IDattr = 〈id1, ..., id`, id`+1 = attr〉. Compute the decryption key set Ki,attrcom,user

= Delegate(US K = Ki,attr,user, APA, IDattr, id`+2 = CTcom, ` + 2). Using the ciphertext

at node t and Ki,attrcom,user node decryption is defined as follows:

DecryptNode(CT, US K, t, i)

=
e(Ct,1,1,K1,1)e(Ct,1,2,K1,2)e(Ct,1,3,K1,3)
e(Ct,2,1,K2,1)e(Ct,2,2,K2,2)e(Ct,2,3,K2,3)

=
e(qt(0)H1(attrcom),w1P2 + r1V2)e(aqt(0)H1(attrcom), r1V ′2)e(−τqt(0)H1(attrcom), r1F2)

e(qt(0)P1, αP2 + w1H2(attrcom) + r2V2 + riF2 + r[0]Hid(IDuser))e(aqt(0)P1, r2V ′2)e(−τqt(0)P1, r2F2)

=
e(H1(attrcom),P2)qt (0)w1 e(H1(attrcom),V2)qt (0)r1 e(H1(attrcom),V′2)aqt (0)r1 e(H1(attrcom),F2)−τqt (0)r1

e(P1,P2)αqt (0)e(P1,H2(attrcom))qt (0)w1 e(P1,V2)qt (0)r2 e(P1,F2)qt (0)ri e(P1,Hid(IDuser))qt (0)r[0] e(P1,V′2)aqt (0)r2 e(P1,F2)−τqt (0)r2

=
1

e(P1, P2)αqt(0)e(P1, F2)riqt(0)e(P1,Hid(IDuser))r[0]qt(0)

At this point, the similarity to the original CP-ASBE system becomes more apparent.

The first term in the denominator will combine with the decryption of other nodes within

the same authority subtree in the access policy. As long as all thresholds are met, the

polynomial interpolation will eventually produce the term e(P1, P2)αqw(0) where w is the
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global leaf node that sits at the root of this authority subtree. This term in the denomi-

nator will clear the original blinding factor imposed during encryption on k′ at node w.

However, the last two terms produced in the denominator by the DecryptNode process

introduce new blinding factors. These terms themselves are blinded by the attribute set

values ri, r[0] as well as the polynomial term qt.

In order to enable the full expressive power of attribute sets, we must utilize the trans-

lation parameters included in the ciphertext in a manner similar to the original CP-ASBE

system [17]. When t < Y but it is still a local node (i.e., t is a local threshold node), then

DecryptNode runs as follows:

1. Compute Bt which contains a subset of any kt (i.e., the threshold at node M) child

nodes z such that z ∈ Bt only if either: label i = (i′ ‖ j) ∈ S z, or label (i′ ‖ j′) ∈ S z for

some j′ , j and z is a translating node with depth(i) ∈ Tz.

2. For each node z ∈ Bt such that label i = (i′ ‖ j) ∈ S z call DecryptNode(CT, US K, t, i)

and store the output in Fz.

3. For each node z ∈ Bt such that the label (i′ ‖ j′) ∈ S z and j′ , j call DecryptN-

ode(CT, US K, t, (i′ ‖ j′)) and store the output in F′z. If j = 0 then ri = ri′‖0 = ri′

(recall the restriction in the user key generation that ri = ri‖0) and depth(i′ ‖ j′) = d.

Translate F′z to Fz as follows:

Fz = e(C′z,d,KF2,i′‖ j′)F′z = e(qz(0)βdP1, (
−ri′‖0+ri′‖ j′

βd
F2))F′z = e(P1, F2)qz(0)(−ri+ri‖ j′ )F′z

=
1

e(P1, P2)αqz(0)e(P1, F2)riqz(0)e(P1,Hid(IDuser))r[0]qz(0)

If j , 0 then translate F′z to Fz as follows:
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Fz = e(C′z,d,KF2,i′‖ j′ − KF2,i′‖ j)F′z = e(qz(0)βdP1,
ri′‖ j′−ri′‖ j

βd
F2)F′z

=
1

e(P1, P2)αqz(0)e(P1, F2)riqz(0)e(P1,Hid(IDuser))r[0]qz(0)

Note that the above translations are between sets whose recursive depth differs by

at most one. More specifically, the translation is from the outer set of Ai′‖ j′ to the

outer set of Ai′‖ j if j , 0 or the outer set of Ai if j = 0. Deeper translations can be

made in a similar manner as demonstrated above provided the relevant translation

indices exist in Tz. Recall that these translation indices are created during encryp-

tion and therefore are part of the access policy. Hence, they are available only at the

discretion of the encrypting party.

4. Compute Ft using polynomial interpolation in the exponent as follows:

Ft =
∏
z∈Bt

Fz
∆k,B′z (0) where k = index(z), B′z = {index(z) : z ∈ Bt}

and the Lagrange coefficient ∆i,S (x) =
∏

j∈S , j,i

x− j
i− j

=
1

e(P1, P2)αqt(0)e(P1, F2)riqt(0)e(P1,Hid(IDuser))r[0]qt(0)

The computations above work up the access policy until the node t is a domain

threshold node. When this occurs, the algorithm performs all the steps for a local

threshold node with following additional step:

5. Using the methodology established in Step 3 above, translate from the set Ai to the

outer set of Aauthority,domain,user using the translation parameters C′w,d along with the

translation components of the user key KF2,i. If the access policy is satisfied by

Aauthority,domain,user, it will then be possible to use the pairing of Cv with KF2,[0] and

Kid,[0] to perform a final translation. This changes the blinding factor to αg which is
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shared amongst all nodes. Recall the parent of a domain threshold node is a global

leaf node in the multi-domain case, or itself in the single domain case. Let w ∈W be

the relevant global leaf node. Once enough domain threshold nodes are decrypted to

satisfy the threshold of w, store the result of the interpolation (as outlined in Step 4)

of the decrypted domain threshold node values in F′w. Fw is calculated as follows:

Fw = CwF′w = (k′ · e(P1, F2)αg s)gw(0)e(P1, P2)αqw(0)F′w

=
(k′ · e(P1, F2)αg s)gw(0)e(P1, P2)αqw(0)

e(P1, P2)αqw(0)e(P1, F2)αgqw(0)e(P1,Hid(IDuser))αgqw(0)

=
(k′ · e(P1, F2)αg s)gw(0)

e(P1, F2)αgqw(0)e(P1,Hid(IDuser))αgqw(0)

At this point, no more translation is required and nodes can continue to be com-

bined using interpolation outlined in Step 4 to satisfy the global thresholds outlined

in the policy. Once enough nodes of the access policy are interpolated into the root

node, FR takes the following form (recall that gR = 1 and qR = s):

FR =
k′ · e(P1, F2)αg s

e(P1, F2)αg se(P1,Hid(IDuser))αg s =
k′

e(P1,Hid(IDuser))αg s

Now k′ can be recovered using e(Cid,Kid) and FR. Using k′ and Cσ, recover m and x.

IfH(x) , CTcom then return ⊥, otherwise calculate k = h(x). If MACk(CT ) , CTtag

then return ⊥. Otherwise, return m. The equations for the recovery steps are listed

below:

k′ = e(Cid,Kid)FR =
e(P1,Hid(IDuser))αg s(k′)

e(P1,Hid(IDuser))αg s [k′]m`+x` ⊕Cσ = (m ‖ x)
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4.5 Security

In this section, we discuss the security aspects of MA-AHASBE. We begin by

discussing the security model in terms of a security game. We then discuss the intuition

for the security of the system from both the single authority and multiple authority

perspectives. Next, we discuss the complexity assumptions that the security proof requires.

The complexity assumptions are static, but are non-standard. However, they are not novel

to MA-AHASBE and in fact are the same assumptions that are used in LW-AHIBE [89].

We conclude by providing a sketch of the proof. The proof follows the same structure as the

one presented for LW-AHIBE [89]. The details of the instantiations required modifications

from the LW-AHIBE proof in order to account for multiple authorities and the additional

components for ciphertexts and keys that exist in MA-AHASBE but not in LW-AHIBE.

The full proof details are provided in Appendix A.

4.5.1 Security Model.

MA-AHASBE-CPA Security The following is the definition of both anonymity

and semantic security in terms of a security game between a challenger and an adversary.

The game generalizes the original CP-ASBE game to include multiple authorities. The

game definition is given in terms of a central authority that generates the global parameters.

The functionality of this central authority could be replaced by the local authorities running

a secure, multi-party computation (SMPC) protocol. There are n local authorities. The

game reduces to the CP-ASBE game in the case where n = 1. In this case, the local

authority may also act as the central authority. The game definition relies on the concept

of structural equivalence for policies. Two policies are said to be structurally equivalent

if they share the same tree structure. This means that starting at the root node of each tree,

nodes from both trees have the same type (e.g., translation node, global leaf node, local

leaf node), the same number of children, and the same threshold values. For example, if

two policies are structurally equivalent, the same q coefficients as described in the Encrypt
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algorithm can be used to satisfy both policies. Two policies that are structurally equivalent

do not need to use the same attributes as leaf nodes, or even use the same authorities in the

policy. With this definition in place, the security game is defined as follows:

1. Setup: The setup is divided between a central authority and n local authorities.

(a) A central authority runs the algorithm GlobalSetup and gives the global

parameters GP to every local authority Ak ∈ {Ak}k∈[1,n] and to the adversary.

(b) Every local authority Ak ∈ {Ak}k∈[1,n] takes the global parameters GP and runs

AuthoritySetup to generate the set of authority parameters {APk}k∈[1,n]. The set

{APk}k∈[1,n] is given to the adversary.

2. Phase 1: The adversary makes up to q1 queries for private keys corresponding to

user keys US Ki with key structures Ai, or domain keys DS Ki where i ∈ [1, q1].

3. Challenge: The adversary submits two message-policy pairs (M0, P∗0) and (M1,P∗1).

Both challenge access policies must satisfy two conditions. First, both policies must

be structurally equivalent. Second, none of the private keys received in Phase 1

corresponding to user keys US Ki or domain keys DS Ki for i ∈ [1, q1] may satisfy

either challenge access policy. The challenger chooses a random bit b
U
←− {0, 1} and

encrypts Mb under P∗b. The resulting ciphertext CT ∗ is created without explicitly

including the policy P∗b and is given to the adversary.

Note: If the challenge access policy only contains one global leaf node, then none of

the private keys issued during Phase 1 are allowed to satisfy the challenge policy. If

the challenge access policy contains at least two global leaf nodes created with the

authority parameters PPk1 and PPk2 such that k1 , k2 and k1, k2 ∈ [1, n], then this

means the adversary could satisfy all global leaf nodes in the challenge policy with
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private keys from Phase 1, but there must exist at least one global threshold that is

not satisfied due to insufficient private keys issued to a single IDuser.

4. Phase 2: Phase 1 is repeated with the same restrictions as described above for total

of q queries where q ≥ q1.

5. Guess: The adversary outputs a guess b′ of b.

6. Advantage: The advantage of an adversary A in this game is defined as AdvA =

|Pr[b′ = b] − 1
2 |.

4.5.2 Security Intuition.

The security for the MA-AHASBE system reflects the security of the two underlying

systems. The leaf nodes in the access policy are essentially problem instances of LW-

AHIBE, split across the access policy using an information theoretic linear secret sharing

scheme. The LW-AHIBE system is proven using the dual-system encryption technique

using static, but non-standard assumptions. The LW-AHIBE method for creating semi-

functional, partially semi-functional and nominally functional ciphertexts and keys require

no modification to work in MA-AHASBE. The only difference between the two is the form

of a successful decryption. In LW-AHIBE, a successful decryption reveals the original

message. In MA-AHASBE, a successful decryption of a leaf node takes the form described

in the algorithm DecryptNode. Also, the anonymity from LW-AHIBE is used to protect

selected attributes from being disclosed in the access policy. Since an attribute in MA-

AHASBE is an identity in the underlying AHIBE, the security of this feature is a direct

consequence of the anonymity of the underlying AHIBE. Once enough leaf nodes are

decrypted, translating and combining them to satisfy the linear secret sharing thresholds

becomes an instance of CP-ASBE. CP-ASBE is proven in the random oracle and generic

group models [17]. However, since MA-AHASBE builds on LW-AHIBE and uses the same
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dual system encryption proof structure, the entire system can be proven without oracles

(random or group).

Before describing the structure of the dual system encryption proof, we first provide

some additional intuition behind the security of MA-AHASBE for both the single authority

and multi-authority scenarios.

4.5.2.1 Single Authority.

We first look at the single authority case. Notice that in the ciphertext, the random

value k′ is xor’d with the message. Thus, the adversary must recover k′, otherwise the con-

tents of the message m are information theoretically secure. The value k′ only appears in

one place, which is the single global leaf Cw. In particular we have:

Cw = k′ · e(P1, F2)αg s · e(P1, P2A)αA s

If we make the following definitions, where x, y, and z are all part of the authority pa-

rameters available to the adversary and s is the random value chosen during encryption:

x = e(P1, F2)αg

y = e(P1, P2A)αA

z = xy

Cw = k′ · (xsys) = k′ · zs

It becomes clear that to recover k′, the adversary must be able compute the inverse of

the zs term. The adversary has z through the authority parameters, but does not have s di-

rectly. However, s has been split into linear secret shares according to the challenge access

policy. These shares of s are found in the leaf nodes of the ciphertext, represented by the

value q(0). Based on the security properties of LW-AHIBE, the only way to "recover" q(0)
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is through successful decryption with the appropriate attribute key. In LW-AHIBE, a suc-

cessful decryption reveals the original message. In MA-AHASBE, two random blinding

factors have been added to the key which are unknown to the adversary. This makes a suc-

cessful decryption of a leaf node take the form described in the algorithm DecryptNode.

Note that this "recovery" of q(0) actually places it in the exponent of three base elements.

In particular it is of the form:

1
e(P1, P2)αqt(0)e(P1, F2)riqt(0)e(P1,Hid(IDuser))r[0]qt(0)

At this point, the adversary must only have keys that do not satisfy the challenge pol-

icy. This may occur for one of two reasons. Either the adversary cannot properly decrypt

a leaf node, or the adversary cannot perform all necessary translations. In the case where

the adversary cannot properly decrypt a leaf node, we are done since there is no way to

satisfy the linear secret sharing thresholds. Otherwise we are in the case where the inability

to satisfy the policy occurs purely because of the inability to translate between recursive

depths. At this point, the problem closely represents an embedded instance of CP-ASBE.

Note that here, the domain threshold represents the root node of an CP-ASBE system.

4.5.2.2 Multiple Authorities.

We now examine the case when the challenger submits an challenge policy with mul-

tiple authorities. Unlike the single authority case, the adversary is allowed to possess keys

that successfully decrypt entire subtrees rooted at global leaf nodes. In order to prevent the

adversary from trivially satisfying the entire policy, the restriction is that these decryption

operations must be done such that any global threshold node cannot be satisfied with global

leaf nodes that have been decrypted with the same IDuser. This decrypted global leaf node

takes the following form:
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Fw =
(k′ · e(P1, F2)αg s)gw(0)

e(P1, F2)αgqw(0)e(P1,Hid(IDuser))αgqw(0)

Here it is evident why the decryption of global leaf nodes must have been decrypted with

the same IDuser. The attacker at this point has the additive shares of s in the terms qw(0)

given above. If the attacker attempts to interpolate the decryption of leaf nodes with differ-

ent (ID)user, then the second term in the denominator of Fw will not properly combine the

shares of s. Furthermore, the attacker does not have anything that can be paired that will

eliminate this blinding factor. The only potentially useful terms available are:

Cid = sβidP1

Kid =
αg

βid
Hid(IDuser)

Kid,[0] =
−αg+r[0]

β0
Hid(IDuser)

The Kid,[0] term is not useful, even if a translation parameter exists that would cancel the β0

term. This is because the result would still be blinded by r[0] which is not available to the

adversary. The remaining two terms Cid and Kid are useful for clearing the IDuser blinding

factor only at the root node, in other words after enough global leaf nodes have been inter-

polated to meet the global root node threshold value. This is because Cid contains an s term

and not q(0) terms. Furthermore, these are the only terms available that contain βid, as all

the other terms used in the CP-ASBE scheme use separate β values.

4.5.2.3 Key Escrow.

In MA-AHASBE, it is important to recognize that the central authority does not have

key escrow in the system. This is because the central authority does not have the αA value

which is kept private by the local authorities. The central authority does have access to

the value αg which does give the central authority the ability to facilitate a degree of col-

lusion. In order to support collusion, a malicious central authority must find two or more
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users from different domains that are willing to collude. These users can decrypt ciphertext

nodes until they reach a global leaf node. At this point, the users would be prevented from

combining the global leaf nodes since the leaf nodes would have been decrypted with dif-

ferent user keys. Critically though, at this point the local authority blinding factor has been

removed and the only blinding factor remaining is tied to user identifiers. Recall a global

leaf node at this point is in the following form:

Fw =
(k′ · e(P1, F2)αg s)gw(0)

e(P1, F2)αgqw(0)e(P1,Hid(IDuser))αgqw(0)

The central authority, with knowledge of αg, can eliminate the blinding factor e(P1,Hid(IDuser))αgqw(0)

since the ciphertext contains qw(0)P1 for each domain threshold node. The central author-

ity can use these values to compute the qw(0)P1 value for each global leaf node through

interpolation. It can now eliminate the blinding factor by pairing with Hid(IDuser) and

multiplying the result with Fw. The result can now be interpolated up to the root node and

the message can be recovered.

The ability to support this type of collusion is why the central authority is required to

be trusted. One way to work around this is to decentralize the central authority as described

previously in §4.3.2.1.

4.5.3 Complexity Assumptions.

We now review the complexity assumptions used in the MA-AHASBE security proof.

Note that these assumptions are for Type-3 pairings and are based on earlier work by done

in [89]. Here, G = (p,G1,G2,GT , e, F1, F2) represents an asymmetric pairing and A is a

probabilistic, polynomial time algorithm (PPTA) that outputs 0 or 1.

Assumption LW1: Define a distributionD as follows: F1
U
←− G×1 ; F2

U
←− G×2 , a, b, s

U
←− Zp,

Y1
U
←− G1;

D = (G, F1, bsF1, sF1, aF1, ab2F1, bF1, b2F1, asF1, b2sF1, b3F1, b3sF1, F2, bF2)
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The LW1 problem is to decide, given (D, Z1), if Z1 = ab2sF1 or Z1 ∈U G1. The

advantage of an algorithmA in solving the LW1 problem is given by:

AdvLW1
A = |Pr[A(D, ab2sF1) = 1] − Pr[A(D,Y1) = 1]|

The (ε, t)-LW1 assumption holds in G if for any adversaryA running in time at most t,

AdvLW1
A ≤ ε.

Assumption LW2: Define a distribution D as follows: F1
U
←− G×1 ; F2

U
←− G×2 , d, b, c,

x
U
←− Zp, Y2

U
←− G2;

D = (G, F1, dF1, d2F1, bxF1, dbxF1, d2xF1, F2, dF2, dF2, bF2, bF2, cF2)

The LW2 problem is to decide, given (D, Z2), if Z2 = bcF2 or Z2 ∈U G2. The advantage

of an algorithmA in solving the LW2 problem is given by:

AdvLW2
A = |Pr[A(D, bcF2) = 1] − Pr[A(D,Y2) = 1]|

The (ε, t)-LW2 assumption holds in G if for any adversaryA running in time at most t,

AdvLW2
A ≤ ε.

Decisional Bilinear Diffie-Hellman in Type-3 pairings (DBDH-3)): Define a distribution

D as follows: F1
U
←− G×1 ; F2

U
←− G×2 , x, y, z

U
←− Zp and YT

U
←− GT ;

D = (G, F1, xF1, yF1, zF1, F2, xF2, yF2)

The DBDH-3 problem is to decide, given (D,ZT ), if ZT = e(F1, F2)xyz or ZT ∈U GT .

The advantage of an algorithmA in solving the DBDH-3 problem is given by:

AdvDBDH−3
A = |Pr[A(D, e(F1, F2)xyz) = 1] − Pr[A(D,YT ) = 1]|

The (ε, t)-DBDH-3 assumption holds in G if for any adversary A running in time at

most t, AdvDBDH−3
A ≤ ε.

73



Assumption A1: Define a distribution D as follows: F1
U
←− G×1 ; F2

U
←− G×2 , a, z, d, s,

x
U
←− Zp and Y1

U
←− G1;

D = (G, F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2)

The A1 problem is to decide, given (D, Z1), if Z1 = sdzF1 or Z1 ∈U G1. The advantage

of an algorithmA in solving the A1 problem is given by:

AdvA1
A = |Pr[A(D, sdzF1) = 1] − Pr[A(D,Y1) = 1]|

The (ε, t)-A1 assumption holds in G if for any adversary A running in time at most t,

AdvA1
A ≤ ε.

4.5.4 Security Theorem.

We can now state the security theorem:

Theorem 4.1. Given q is the number of adversary queries, if the (ε, t′)-LW1, (ε, t′)-LW2,

(ε, t′)-DBDH-3 and (ε, t′)-A1 assumptions hold, then MA-AHASBE is (ε, t, q)-ANO-IND-

ID-CCA secure where:

ε ≤ εLW1 + 2qεLW2 + εDBDH−3 + εA1

4.5.5 Proof Overview.

The proof of Theorem 4.1 follows the same dual system encryption strategy as [89],

with the adjustments necessary to simulate the unique aspects of MA-AHASBE. In this

section we present the structural elements of the proof. The actual instantiations from the

problem instances for each portion of the proof are presented in Appendix A. Intermediate

steps to show that the components are well-formed are not presented in Appendix A, but

since the terms follow the same structure as [89] the same intermediate steps presented

there can be used for MA-AHASBE. The security for both LW-AHIBE and MA-AHASBE
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depends on the following complexity assumptions: LW1, LW2, DBDH-3, and A1. In

summary, the complexity assumptions play the following roles in the security reductions:

• LW1: The ability of the adversary to distinguish between a normal ciphertext and a

semi-functional ciphertext is reduced to solving LW1.

• LW2: The ability of the adversary to distinguish between a normal key and a semi-

functional key on the k’th key query is reduced to solving LW2.

• DBDH-3: The ability of the adversary to distinguish between a semi-functional

encryption of the real message from a semi-functional encryption of a random

element of GT is reduced to solving DBDH-3.

• A1: The ability of the adversary to distinguish between a random message encrypted

under a random, structurally equivalent policy and a chosen message encrypted under

a chosen policy is reduced to solving A1.

The proof uses a simulator that works in a manner very similar to the simulator used in LW-

AHIBE. The key difference is that the simulator for MA-AHASBE has to simulate a set of

global parameters, authority parameters for multiple authorities, a more complex ciphertext

relative to LW-AHIBE, as well as some additional key elements. This simulator takes as

input LW1, LW2, DBDH-3 and A1 with either real components or random components.

The same hybrid sequence of 2q + 4 games defined in [89] are used here:

• Gamereal: The real security game defined in Section 4.5.1.

• Game0: The challenge ciphertext is semi-functional and all keys returned are normal.

• Gamek,0 for 1 ≤ k ≤ q: The k’th key is partial semi-functional, the first k− 1 keys are

semi-functional and the rest of the keys are normal.

• Gamek,1 for 1 ≤ k ≤ q: The k’th key is fully semi-functional.
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• GameM−random: All keys returned are semi-functional and the challenge ciphertext

encrypts a random message.

• Game f inal: All keys returned are semi-functional and the challenge ciphertext

encrypts a random message to a random, structurally equivalent policy.

The games are ordered as Gamereal, Game0, Game1,0, Game1,1, ..., Gameq,0, Gameq,1,

GameM−random, Game f inal. Let Xreal, X0, X1,0, X1,1, ..., Xq,0, Xq,1, XM−random, X f inal be the event

that A wins in Gamereal, Game0, Game1,0, Game1,1, ..., Gameq,0, Gameq,1, GameM−random,

Game f inal respectively. Game0,1 is the same as Game0.

It is important to recognize that the main components in MA-AHASBE are nearly

direct instances of LW-AHIBE. For user keys, the key difference is that the function

RestrictToUser appends two additional components onto the K2,1 portion of the key.

During leaf node decryption, these additive terms become multiplicative terms in the

decrypted result. In the ciphertext, there are q terms that represent the secret split over

a policy. It is a straightforward exercise to show that these additional terms do not interfere

with the interaction between normal and semi-functional ciphertexts with normal, semi-

functional, partially semi-functional, and nominally functional keys. Therefore, MA-

AHASBE can directly leverage the constructions as described in [89] for creating semi-

functional components without modification. MA-AHASBE semi-functional ciphertext

components are embedded in the local leaf nodes. MA-AHASBE domain keys map directly

to LW-AHIBE keys so creating semi-functional domain keys is exactly the same as LW-

AHIBE. A semi-functional user key is one that is generated from a semi-functional domain

key. The same logic applies to all types of semi-functionality (partial, nominal, normal). It

is straightforward to verify that MA-AHASBE semi-functional keys and ciphertexts behave

as expected for a dual system encryption proof.
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In Game f inal, a random message is encrypted to random policy, so we know that

Pr[X f inal] = 1
2 . In order to support the inequality in Theorem 1, we prove that the same

five lemmas presented in [89] hold for MA-AHASBE. These lemmas are:

• Lemma 4.1: |Pr[Xreal] − Pr[X0]| ≤ εLW1

• Lemma 4.2: |Pr[Xk−1,1] − Pr[Xk,0]| ≤ εLW2 for 1 ≤ k ≤ q

• Lemma 4.3: |Pr[Xk,0] − Pr[Xk,1]| ≤ εLW2 for 1 ≤ k ≤ q

• Lemma 4.4: |Pr[Xq,1] − Pr[XM−random]| ≤ εDBDH−3

• Lemma 4.5: |Pr[XM−random] − Pr[X f inal]| ≤ εA1

The actual instantiations for each lemma are presented in Appendix A.

4.5.6 Chosen Ciphertext Security Security.

The construction for MA-AHASBE uses the generic chosen ciphertext security (CCA)

transform described in [19]. Often systems are demonstrated only with CPA security, given

the existence of such generic transforms. In the case of MA-AHASBE, care must be taken

to ensure that the transform is properly applied. In particular, this is due to the requirement

that the CCA transformation requires that the encrypting party be able to generate the

private key for an arbitrary identity. In other words, it must act as a private key generator

for an identity whose value is the commitment message. This functionality is provided by

the LW-AHIBE system by allowing users to delegate to arbitrary identities, assuming there

are enough levels of delegation authority present in that user’s private key. The ability to

finely control this amount of delegation authority is necessary for MA-AHASBE. If a user

is allowed to delegate arbitrarily, they could then become unauthorized subdomains.

The key aspect of the security of MA-AHASBE with regards to the issues described

above is that the user key is both required to delegate one level in order to decrypt and that

the user key is authorized to delegate exactly one level. If the user were to try to misuse
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their one level of delegation to forge a key for an unauthorized subdomain, the resulting

key would not be able to create further delegations. Since at least one level of delegation is

required to decrypt, this new key would be useless. Since this tight control over delegation

authority is a strict requirement, the MA-AHASBE construction is described with the

transform applied. The proof of security given above demonstrates that MA-AHASBE

is CPA secure. It is a straight forward exercise to verify that the additional components

involved in the construction are a direct application of CCA transform described in [19].

4.6 Conclusions and Future Work

The MA-AHASBE system fills a gap in CP-ABE systems, specifically through its

combination of large universe, multi-authority, delegation and attribute-set capabilities.

Future work involves analyzing its performance, especially in the decentralized case. Also,

it may be possible to use the same techniques with another AHIBE [90] to build a system

with stronger security features. It would also be useful in an enterprise environment to sign

messages with attributes, either compound or singleton, in order to verify the authenticity

of messages. In MA-AHASBE, a ciphertext can be created by anyone, so a signing

mechanism would allow users to verify that messages have been viewed/approved by other

users with certain attributes. A straight forward approach might be taken based on the

suggestions found in [47] for the singleton case.
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V. MA-AHASBE Based Access Control in a Cloud Supported Publish-Subscribe

Data Model

This chapter presents an approach for securing data with public cloud service

providers (CSPs). It defines two models of security which emphasize that CSPs may

be trusted with availability operations, but not with confidentiality. One model called

A-trusted provides no further trust beyond availability operations, while a more relaxed

variant called ACE-trusted allows computation (i.e., system integrity) and certain access

control decisions. The A-trusted model may be appropriate for peer-to-peer type networks,

while the ACE-trusted model may be more appropriate for CSPs. In order to build

applications with these security models, a framework called Axon is introduced. Axon

bridges applications and CSPs by providing a small set of highly available data structures:

maps, queues, and topics. Security can then be layered on these data structures to create

ACE-trusted data structures and protocols. A microblogging application called Critter is

built using this layered approach. Experimental results show that, while there is certainly

cost associated with encryption, decryption and increased payload sizes, the security

tradeoff may be worth it for situations where preventing disclosure of sensitive data is

critical.

5.1 Introduction

Cloud computing is becoming an important method for storing and processing data.

One of the primary draws of public cloud computing is that cloud service providers (CSPs)

can leverage economy of scale to provide cost-effective services. However, outsourcing

data to a third party brings with it important security concerns. This chapter explores an

approach that helps to address these concerns.
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To address the issue of security, we propose a security model based on the

information security principle of availability. While the information security principles

of confidentiality and integrity can typically be enforced using cryptographic techniques,

the requirement to trust CSPs with availability of data is difficult to avoid without forcing

clients to maintain an entire replica of all data provided to the CSP. In many cases,

this approach defeats the purpose of using cloud services. Fortunately, the business

model for CSPs usually depends on providing high availability of data. With CSPs

capable of providing high availability service level agreements (SLAs) to their clients,

the security concern shifts from availability to confidentiality and integrity. Our proposed

security model, called Availability-trusted (or A-trusted), only trusts the CSPs with making

sure data CSPs receive are made available to clients according to any applicable SLAs.

A specialization of this security model called Availability-Computability-Enforceability-

trusted (or ACE-Trusted) adds additional trust with computation and the enforcement of

availability access controls (not confidentiality access control). The A-trusted model is

appropriate for situations where there is a minimal amount of trust, such as in peer-to-peer

networks. The ACE-trusted model is appropriate for situations such as a CSP, where some

additional trust is warranted in order to avoid the extra computational cost associated with

the A-trusted model.

We believe that by adopting such conservative security models, clients may be more

willing to build cloud computing applications that must process sensitive data that clients

may otherwise be unwilling to outsource to a CSP. In order to investigate how applications

could be built under these models, we have developed a simple messaging application we

call Critter. Critter supports the basic messaging capabilities of popular microblogging

applications such as Twitter and Instagram. It allows users to post messages to their public

feed, where any followers of that feed will receive them. Users may tag messages by

including the hashtag symbol # followed by a keyword of the user’s choice. Users may
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then follow these tags for topics which interest them. Users may also direct messages to

only be sent to specific users rather than their public feed by including the target users’

handle preceded by the @ symbol. In Critter, all messages are protected from disclosure

to the CSP through encryption. We believe that Critter represents an application that has

sufficient complexity to be useful for understanding the challenges of these models, while

being simple enough to study and understand how the underlying security components

work.

Finally, in building Critter we realized that we needed a framework to help bridge the

gap between the requirements of the security model and the services provided by a CSP.

We describe Axon, which is the resulting framework that we developed. The core concept

of Axon is that the interface between client applications and cloud infrastructure should be

a small set of easily understood data structures. Currently, Axon supports three core data

structures: maps (also called dictionaries or key-value stores), queues, and topics. Axon

also supports a distributed event system that informs connected clients when changes to

these data structures occur. By focusing on a small set of data structures, the cloud side

of Axon can ensure that the data placed in these data structures is highly available and

persistent. On the client side, the core data structures serve as building blocks for more

complex structures that provide confidentiality and integrity guarantees that support the

security model. Applications such as Critter can then use these secure data structures.

This layered approach to security provides a way to manage the complexity that arises for

applications that require both security and high availability.

This chapter is divided into six sections. The next section discusses background and

related work. We then discuss our proposed security and dependability models in Section

3. In Section 4, we describe the Axon framework. We describe how we use Axon to build

the Critter application in Section 5 and present experimental results. We conclude the paper

in Section 6 along with thoughts on future work.
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5.2 Background and Related Work

5.2.1 Definitions.

Attribute-Based Access Control An access control method where subject requests to

perform operations on objects are granted or denied based on assigned attributes

of the subject, assigned attributes of the object, environment conditions, and a set of

policies that are specified in terms of those attributes and conditions (NIST definition

[58]).

Key-Pair Public Key Encryption (KP-PKE) This type of public key cryptography refers

to asymmetric (public/private) key pairs that are tightly coupled in that one cannot

be changed independent from the other (e.g., RSA, ElGamal). This term is used

to distinguish it from other types of public key cryptography such as identity-

based encryption [95] (or attribute-based encryption [13, 94]) where the public keys

are fixed strings and the private keys are updated independently by a private key

generator.

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) This term refers to a family

of cryptographic systems [13, 31, 32, 52] where users are given cryptographic keys

that represent attributes. In many CP-ABE systems, the attributes are fixed strings

(e.g., “User”, “Active”, “Student”). The cryptographic keys corresponding to these

fixed string attributes are provided by a trusted private key generator. Ciphertext is

created by combining an access policy over a set of attributes, a message, and a set

of public parameters provided by the private key generator.

Authenticated Encryption with Associated Data (AEAD) This is a type of symmetric

key encryption which provides confidentiality, integrity, and authenticity for the

encrypted data. The AEAD encryption takes as input a plaintext that requires

confidentiality protection, plaintext that will not be encrypted but must not be altered
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(i.e., the associated data), and the encryption key. As a result, the AEAD encryption

algorithm produces ciphertext and an authentication tag. AEAD decryption takes

as input the ciphertext, the plaintext associated data, authentication tag, and the

encryption key. The decryption algorithm only succeeds if the data (both the

ciphertext and the associated data) have not been altered in any way. If decryption

succeeds it produces the original plaintext. If the data has been altered, the decryption

will detect this condition and fail. For this paper, we assume that the AEAD

algorithm is random in that each invocation of the algorithm produces different

results even if the same inputs are used.

Message Authentication Code (MAC) A message authentication code is a cryptographic

primitive that provides both integrity and authentication guarantees for messages. A

MAC generation algorithm takes as input a message and a cryptographic key and

produces a tag. A corresponding verification algorithm takes as input a message,

a cryptographic key and a tag produced by the generation algorithm. If the tag

was created by the same message and cryptographic key as the one provided to

the verification algorithm, the verification succeeds and fails otherwise. Like a

cryptographic hash function, a MAC ensures that a message has not been altered,

thereby providing integrity. However, unlike a cryptographic hash function, the

MAC algorithms require a secret key. This provides an authentication mechanism

since only someone in possession of the secret key can create tags that verify with

that particular key.

WebSockets / Long Polling WebSockets is a protocol that provides full-duplex communi-

cation over the Hypertext Transfer Protocol (HTTP). It is primarily designed to facil-

itate real-time applications that run in Internet browsers, but can be used in anywhere

where full-duplex communication is desired. However, WebSocket connections may

fail when behind certain types of proxies which do not support them. Long polling
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is an alternative technique that also provides full-duplex communication over HTTP.

Long polling will generally work through proxies and firewalls, but has increased

latency and overhead costs when compared to a protocol such as WebSockets. In

long polling, a client sends a normal HTTP request for data. If the server has data

to send, it will send it immediately and close the HTTP connection. When the client

receives the data, it immediately issues another request. When the server does not

have data to send the client, it keeps its side of the HTTP connection open until it

either has data to send or a timeout occurs. The worst case latency occurs when the

server determines it has data to send the client immediately after it has closed the

previous HTTP connection (either due to a previous message or a timeout occuring).

In this case, the server must wait for the client to issue its next connection request in

order to send the data.

5.2.2 Related Work.

Access control and confidentiality in publish/subscribe (pub-sub) networks has been

an active research area for many years. Pub-sub systems can be described as either topic

based or content based. In topic based pub-sub, users subscribe to topics by keyword. Any

messages published to that topic will be received by users who are subscribed. Content

based pub-sub is an enhancement where users submit filters that describe the type of content

that they wish to recieve. When a message is published to the system, if the content of a

message matches the filter provider it is routed to the user.

While work has been done in protecting confidentiality and integrity for both content

based pub-sub ([8, 12, 59, 60, 77, 86]) and topic based systems, this work focuses on a

topic based systems. Due to the recent popularity of social networks such as Twitter and

Instagram using this type of messaging system, this type of messaging is also referred to as

microblogging. One of the first examples of protecting confidentiality in a microblogging

application is #h00t [6]. The goal of #h00t is to protect messages from being intercepted
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and censored by the service provider or some other controlling entity such as a government.

The system relies on shared group keys that are distributed in an ad-hoc fashion amongst

group members. Another system Hummingbird [33] also protects the content of tweets by

encrypting them first. Hummingbird uses efficient cryptographic primitives, but requires

that followers request approval from publishers to follow certain topics. In [87], the authors

propose a technique called k-subscription to protect the service provider from discovering

which channels in which users have an interest. Users subscribe to additional noise

channels in order to mask their true channels of interest. The technique is not designed

to protect the confidentiality of the content of the tweets, instead relying on a system such

as #h00t or Hummingbird for that functionality.

5.2.3 MA-AHASBE.

MA-AHASBE (Multi-Authority Anonymous Hierarchical Attribute-Set Based En-

cryption) is a ciphertext-policy attribute-based encryption (CP-ABE) [13] system with a

rich set of capabilities. Here we provide a brief summary of its features. Full details of the

system including security proofs can be found in its full technical report [99].

MA-AHASBE was developed to help facilitate the use of CP-ABE within an

federated, enterprise system. In this type of system, there may be multiple distinct

organizations that wish to work together and share a common attribute infrastructure.

In MA-AHASBE, each of these organizations is called an authority. If these authorities

cooperate and agree on a common set of global parameters, including a list of user

identifiers, it is possible for users to receive attribute keys from each authority and use

them to satisfy policies. This is useful in situations where a single user must possess

attributes from multiple organizations. For example, say a student at a university is doing

an research internship for a corporation. There may be documents that should only be

accessible to students from the university who are participating in the internship. Under a

multi-authority system such as MA-AHASBE, the student can receive a “Student” attribute
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from the university and a “Intern” attribute from the corporation. The student could then

satisfy an access policy that requires both attributes. The two authorities do not need to

share any secret key material in order to do this, they must only agree on the user identifier

to use (which is part of the public, global parameters) when generating the attributes.

MA-AHASBE also allows authorities to delegate responsible to lower level domains.

In MA-AHASBE, these lower level domains have full autonomy to create keys for any

attributes they need. The keys they generate, however, are bound to that specific domain.

For example, the university in the previous example may wish to delegate some if its

authority to the college of engineering. We distinguish attributes from different domains

by writing the full hierarchy of the attribute in a tuple. For example, if the university

created a “Student” attribute, that attribute would be written 〈"University", "Student"〉. If

the university delegated attribute generation authority to the college of engineering, and the

engineering college in turn created a “Student” attribute, it would be written 〈"University",

"College of Engineering", "Student"〉. As with the multi-authority example, these attributes

could be combined in a single access policy that would require a student to have credentials

from both the university and the college of engineering. Allowing authorities to delegate

the ability to generate attributes in an autonomous way is crucial for large organizations.

It allows for the maintenance of attribute keys to be managed in the same structure as the

organization itself.

The complexity of a CP-ABE system such as MA-AHASBE provides a great deal

of expressiveness in protecting the confidentiality and integrity of data. However, this

expressiveness comes at a cost. MA-AHASBE operations are typically slower than AEAD

or even KP-PKE operations. The encryption time and size of the resulting ciphertext scales

with the number of leaf nodes in an access policy. The decryption time scales with the

number of nodes that are required to satisfy the policy. As such, MA-AHASBE is used in

conjunction with AEAD and KP-PKE. By combining MA-AHASBE with AEAD and KP-
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PKE, some of the performance cost can be mitigated while maintaining the expressiveness

of MA-AHASBE.

There are two basic ways of employing MA-AHASBE. The first way is shown in

Figure 5.1. The shaded portions of the figure indicate data that is meant to be private,

while the unshaded portions may be put in a public location (such as a public cloud). Here,

MA-AHASBE is used to protect a symmetric key with an access policy. The ciphertext

produced by this encryption is much larger than the original message. A 128-bit symmetric

key encrypted with the policy shown in Figure 5.1 may result in ciphertext size of a few

kilobytes (experimental results are discussed in more detail in §5.5). The symmetric key

is then used to encrypt the document using AEAD which is much faster and produces

ciphertext that is close in size to the original message. MA-AHASBE and AEAD both

protect against tampering with ciphertext. Ciphertexts that are not the result of following

the encryption algorithms will produce an error when decryption is attempted, as opposed

to producing an incorrect plaintext. Decryption reverses the process. A user that possess

MA-AHASBE attribute keys that satisfies the policy can recover the symmetric key. This

symmetric key can then be used to recover the document.

The method of using a symmetric key directly with MA-AHASBE is useful when a

policy is only used once. When a policy needs to be used with multiple documents, it can be

more efficient to augment the approach with a KP-PKE system. This modified encryption

flow is shown in Figure 5.2. Here, instead of using MA-AHASBE to encrypt a symmetric

key, it is used to encrypt the private key of a KP-PKE key pair. The corresponding

public key part of the KP-PKE key pair then used to protect the symmetric key. The

benefit of doing this is that to encrypt another document under the same policy, only

KP-PKE operations are needed. KP-PKE operations can be much more efficient than

MA-AHASBE operations, especially for large policies. This savings is carried over to

decryption operations as well.
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Hazelcast Hazelcast is an open source Java project that provides distributed, in-memory 

data structures such as sets, maps, queues and topics. 

Sodium Sodium is a modem reimplementation of the NaCl cryptographic library. It 

contains implementations of a w ide variety of cryptographic primitives such as 

AEAD, KP-PKE, digital signatures, and MAC. The project is open source and 

written in cross-platform C. Bindi ngs exist for a variety of languages including Java, 

and there is a Javascript build that has been compiled with the Emscripten cross

compiler. 
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SocketIO SocketIO is a protocol for establishing real-time, full-duplex, event based

connections. It uses WebSockets as the primary connection protocol with a fallback

to long polling. The primary project is open source and provides both server and

client implementations written in Javascript. There are other open source projects

which provide Java clients and servers.

5.3 Security Model

When discussing security and cloud computing, it is important to describe who is

trusted as well as the meaning of that trust. Many protocols related to secure cloud

computing use some variation of the honest-but-curious (HBC) [27, 33, 59, 86, 87, 101]

model with potentially malicious actors. In an HBC model, HBC actors faithfully follow

the underlying protocol but remember all the messages they see and attempt to violate

privacy if they can. Malicious actors are allowed to behave however they like (e.g., they

may lie, cheat, attempt to impersonate others, fail to participate).

A traditional HBC model may not be a satisfying security model for cloud computing.

For example, there may be instances where the cloud service provider (CSP) can reasonably

be expected to follow some protocols in an HBC fashion, but may follow other parts

of the protocol as a malicious actor. For example, in a simple protocol that only stores

and retrieves data a CSP might fall under an HBC model where it is expected that the

stored data is retrievable at some point in the future. In other words, it is reasonable to

believe that a CSP wouldn’t maliciously destroy data or otherwise make it unavailable.

Realistically though, data becomes corrupted despite the large amount of effort CSPs put

into data durability. The durability of the data is usually guaranteed by the CSP up to some

small amount of loss specified through a service level agreement. Additionally, while any

reasonable CSP wouldn’t purposefully tamper with data, it is not impossible. Situations can

arise such as malicious employees, or third party attackers gaining control of the CSP and

tampering with data. If we model the CSP in this storage service protocol as HBC, we may
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not be accurately capturing the fact that this loss occurs and we may be making any other

protocols that depend on this protocol vulnerable to attack. While this seems unsettling,

modeling the CSP as malicious doesn’t seem to represent reality either. If the CSP is

modeled as malicious, the CSP may arbitrarily decide to make the data unavailable or may

make changes to any amount of data it wishes. Modeling the CSP as purely malicious

seems to defeat the purpose of using the CSP in the first place.

Instead, we propose two security models called A-trusted and ACE-trusted that are

still conceptually straightforward, but do a cleaner job of separating out the concerns that

are unique to cloud computing. The key insight is that when data is stored with a CSP, an

explicit trust relationship is formed with regard to availability if that data is ever expected

to be retrieved in the future. Luckily, the core business model of most CSPs is to supply

strong availability guarantees. Accepting this trust relationship seems unavoidable when

dealing with exporting data to a third party. However, this trust does not necessarily extend

to other aspects of information security such as confidentiality and integrity. The goal of the

A-trusted and ACE-trusted security models is to more accurately capture this difference.

5.3.1 The A-trusted and ACE-trusted Security Models.

What is needed is something between HBC and malicious. We could perhaps call

this middle ground semi-malicious, but this seems overly vague and unintuitive. Instead, a

clearer approach may be to use the building blocks of information security: confidentiality,

integrity, and availability. The NIST definitions for these terms are listed below [81]:

Confidentiality Confidentiality is the requirement that private or confidential information

not be disclosed to unauthorized individuals. Confidentiality protection applies to

data in storage, during processing, and while in transit.
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Integrity Integrity can be one of two types:

Data Integrity The property that data has not been altered in an unauthorized

manner while in storage, during processing, or while in transit.

System Integrity The quality that a system has when performing the intended

function in an unimpaired manner, free from unauthorized manipulation.

Availability Availability is a requirement intended to assure that systems work promptly

and service is not denied to authorized users. This objective protects against:

• Intentional or accidental attempts to either:

– perform unauthorized deletion of data

– cause a denial of service or data.

• Attempts to use system or data for unauthorized purposes

Although not part of the official NIST definition, it may be helpful to view the

components of confidentiality in terms of the popular information gathering rules of five Ws

and one H or 5W1H. Even though many encryption oriented security solutions only focus

on the what component in terms of confidentiality, protecting each method of information

gathering typically incurs some type of performance cost. Any proposed solution dealing

with secure cloud computing should address which components of 5W1H are explicitly

supported and which ones are assumed. For the applications in this research, only the what

aspect of confidentiality is supported. Each component of 5W1H is listed here:

Who is the source that generated the information

What is the content of the information

When was the information generated
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Where is the geographic or logical location in a network of the entity that generated the

data

Why was the information produced or which events trigger its creation

How is the data protected (i.e., what is the encryption scheme or protocol)

As with confidentiality, it may be helpful to break the definition of integrity down

into more familiar parts. Here we consider data integrity to consist of two components:

corruption and authentication. Corruption occurs when a value is changed outside a

predetermined computation or protocol. This occurs benignly in variety of situations

such as component failure in storage drives or transmission hardware. If the source

of the corruption is benign, it can be detected with techniques such as checksums or

hash functions. Malicious corruption requires different techniques such as message

authentication codes or digital signatures. Authentication is the process of certifying a

value with a set of credentials along with the process of verifying the certification. This is

critical to scenarios where validating the source of the information is as important as the

data itself.

Finally, it is also helpful to examine the components of availability. One popular data

storage model consists of the operations Create, Read, Update, Delete (CRUD). Variations

of this model include Browse, Read, Edit, Add, Delete (BREAD) and Delete, Read,

Update, Lock, Add, Browse (DRULAB). The CRUD model seems to be the closest fit

that is parsimonious and captures the basic functions of CSP availability. However, in

some ways CRUD does not perfectly align with how we may want to view CSP availability

operations in our security model. For example, if a delete operation is sent to the CSP,

there is generally no way for the client to know if the information is truly (or securely)

being deleted. Requiring that the data is actually deleted may capture more trust than we

actually require or expect from a CSP. A delete operation to a CSP is really just way for
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the client to inform the CSP that it no longer needs access to the data and that it should no

longer be charged by the CSP to make it available. This is weaker than the assumption that

the CSP actually deletes the data upon request, and arguably more accurately captures the

trust relationship. Therefore, in order to facilitate a more fine-grained discussion of what

services a CSP is responsible to provide, we present the Function, Search, Create, Read,

Annul, Write, Lock (F-SCRAWL) model.

Function The client submits a computation request to the CSP and the CSP returns a result

that can be verified as correct by the client more efficiently than simply performing

the computation directly.

Search The client may present a query (e.g., SQL or NoSQL) to the CSP and the CSP will

return the subset of valid data that matches the query parameters.

Create The client requests that a datum be stored and marked as valid for later operations.

Read The client requests access to the current value of a datum that has previously been

stored with the Create operation.

Annul The client marks a datum as invalid and will no longer perform operations for this

datum (i.e., any future operations for this datum should be considered invalid).

Write The client wishes to update an datum previously stored with the Create operation

to a new value (could include concurrency primitives such as compare and swap).

Lock The client wishes to prevent other clients access (e.g., Read, Write, Lock, Annul)

to a datum previously stored with the Create operation until the lock is released

(either by the client or the CSP).

While the CRAWL portion of F-SCRAWL seems directly applicable to the availability

aspect of a CSP, it may not be as clear for function and search operations. The function
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operation has been carefully defined to only allow computation which can be efficiently

verified as correct by the client (e.g., the result of running a secure, multiparty computation

protocol). This condition is what makes the function operation an availability operation

rather than an integrity operation. If the CSP deviates from the computation protocol or

returns an incorrect answer (violating system integrity as defined above), then the client

detects this and discards the result. If this occurs with a high enough frequency, the CSP is

viewed as not being available enough for computation purposes. Search is another subtle

operation that requires availability trust. Here the trust is not in the correctness of the

returned results (which can be verified by the client), but in that the returned set is complete.

Removing this trust would require the client to verify that the CSP is returning all data (i.e.,

making it available) that matches the query. This could of course be done if all the data was

also stored client side, but this may defeat the purpose of storing data with a CSP in the

first place. It is difficult to provide this for a general data set and set of queries, therefore

we make it part of the trusted CSP protocol.

With a more precise view of the CIA model, we now consider what type of trust we

need to place in a CSP. We argue that the only trust we should put into a CSP is in the

availability of F-SCRAWL operations. Outsourcing data and services to a CSP requires

some level of availability trust. In a sense, we are narrowing the scope of the CSP to be

HBC only with respect to F-SCRAWL operations. In other words, the user trusts that the

CSP will not recklessly destroy, corrupt, or otherwise make the data unavailable. Some

data loss or service failure will occur naturally due to disasters, hardware failures or denial-

of-service attacks. The rate at which this is expected to occur will generally be outlined in

the service level agreement (SLA) of the CSP. Also, conformance to the SLA is something

that can be monitored by the client assuming the client is checking the integrity of the data

returned by the CSP. If the risk as stated in the SLA is too high or if the CSP is not abiding
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by the SLA, one mitigation approach would be to replicate the data or services amongst

multiple CSPs.

With the F-SCRAWL model in place, we can now more precisely talk about what

types of trusted systems play a role in a secure cloud computing scenario. We divide the

trust levels into three paradigms: fully trusted, A-trusted (with ACE-trusted as a special

case), and malicious. Each paradigm is listed below along with a short description:

Fully trusted (or CIA-trusted) A fully trusted system is one where sensitive plaintext

data such as cryptographic keys, personally identifiable information (PII), or sensitive

business data may be stored in plaintext (either on disk or in memory).

Examples:

• Client systems of authenticated users

• Servers deployed in a private cloud

Availability-trusted (or A-trusted) An availability-trusted system will faithfully follow

data availability protocols (F-SCRAWL) and fulfill availability SLAs. However, it

will exploit sensitive data to which it has access but does not require in order to

perform its duties (i.e., violates confidentiality). It will manipulate data available to it

in order to accomplish its goals if the data manipulation cannot be easily detected by

the data owner (i.e., violates integrity). If the system is Availability-Computability-

Enforceability-trusted or ACE-trusted, the system is trusted to maintain system

integrity with respect to computations it is asked to perform as well as enforce access

control rules it receives with respect to third parties. The CSP will still attempt to

exploit the data it receives if it can, but will accept and enforce rules regarding how

third parties may use the F-SCRAWL protocols. ACE-trusted is a special case of
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A-trusted.

Examples:

• Servers deployed in a public or community cloud

• Public CSPs may be considered ACE-trusted while a peer-to-peer network

may be considered only A-trusted

• Authenticated users who wish to collude to access information to which

they would not otherwise have access

Malicious Malicious entities are willing to break protocols and subvert systems in order

to gain access to information or systems. Malicious users may be internal or

external. Internal malicious users are those who abuse legitimate access to systems

or cryptographic keys. External malicious users do not have legitimate access to

systems or cryptographic keys and use a variety of techniques to bypass security

mechanisms.

Examples:

• Everyone else

• Evil hackers

• Insider threat

5.4 Axon: A Data Structure Approach to Security, Scalability and Dependability

In order to bridge the gap between the ACE-trusted security model and applications,

we built a framework to facilitate the communication between an application and a CSP.

This framework is called Axon3. This section discusses the design decisions behind Axon

and how it supports the ACE-trusted security model.

3The name Axon comes from the nerve fibers that connect neurons inside the brain and act as information
transmission pathways
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5.4.1 Architecture.

By design, Axon is a very small interface from the perspective of an application. In

fact, in order to support the applications described in the next section, only three data

structures are used. Each data structure has a small number of functions that can be called.

These data structures become the only interface between the application code and the CSP.

The data structures used for the applications in described in the next section are shown in

Table 5.1.

Table 5.1: Axon Data Structures

Data Structure Example Functions

Map insert, update, remove, lookup, enumerate-keys

Queue enqueue, dequeue

Topic publish, subscribe, lookup

Focusing on a small set of data structures as the key interface between the application

and the cloud provides a number of key benefits. First, it removes the responsibility of

scaling and durability away from the application code. From the application’s perspective,

any data stored into the Axon data structures is expected to be highly available. Secondly,

since there are only a few ways to store data, applications have fewer places to check

to make sure that data is properly protected. However, the restriction to these data sets

along with the condition that any information placed inside them must be encrypted puts

some additional complexity burden on the applications. Techniques for dealing with this

complexity are discussed in the next section.

The overall information flow for an Axon enabled application is shown in Figure

5.3. Cryptographic keys begin their life within a private cloud infrastructure that supports

a hierarchy of private key generators. These private key generators distribute keys
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representing user attributes to each of the users in the system. Users provide their keys 

to Axon enabled applications where any information that is stored in Axon data structures 

is required to be encrypted. The client side of the Axon framework then takes the request 

and sends it across a public channel (e.g. , the Internet) to a Hazelcast server over a SocketiO 

connection. These requests consist of a data type (e.g., topic, map, queue), the data 

structure's name as a string (e.g., "parameters", "users"), the name of the function (e.g,. 

add, remove), and any required function parameters. When the cluster receives the request, 

it must determine if the client is authorized to perform that operation on that specific data 

structure. 

In the current prototype implementation of Axon, all users are allowed to create data 

structures as long as the name for the data structure doesn' t already exist. The creator of 

the data structure specifies the permissions for each operation that the data structure allows. 

The creator does this by generating a unique KP-PKE key pair for each function. In the 

request, the name of the function is bound to the public portion of the key pair. The private 

key is encrypted using attribute-based encryption and is also included in the request. When 

the creator sends the request, it includes for each function the public key, the protected 

private key, along with a authorization session timeout value. When the cluster receives the 

request, it creates the requested data structure along with a permissions map. The public 
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key, protected private key pair and timeout value are stored in this permission maps. When

requests come into the cluster to perform operations on the data structure, the cluster first

looks to see if the client has an active authorization session. If this is the first time this

client has requested to do an operation on a specific data structure or the clients previous

session has reached its timeout value, then it will not have an active authorization session.

The server will look up the public key for the operation and encrypt a random value (also

called a nonce, or number used once) with that public key. It will then send this encrypted

nonce along with the protected private key to the client. If the client is able to satisfy the

policy associated with the protected private key, it is able to recover the private portion of

the KP-PKE. It can then use this private key to recover the random nonce sent by the server.

It returns this value to the server, and if the value matches the random nonce that the server

originally sent the client, an authorization session is created and timestamped. The client

is then allowed to perform the associated function until the session reaches the timeout

specified in the creation request. An example of the message exchanges involved in the

creation of a data structure as well as a client gaining authorization to perform a function

is shown in Figure 5.4.

This protocol serves as a good example of the difference between the A-trusted and

ACE-trusted security models. Under the A-trusted security model, the CSP would not be

bound by this authorization protocol and would be free to fulfill data requests from any

client. Therefore, under an A-trusted model, additional measures must be taken to enforce

these types of permissions. For example, to enforce a “write” type permission clients could

include a signature on all stored data that represented a “write” permission attribute using an

attribute-based signature scheme. Clients accessing the data structure would only consider

the data valid if it contains a proper signature. The choice of security model is of course

application and client specific, but we believe that the ACE-trusted security model provides

the right balance for many situations.
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The current implementation of Axon is built on top of Amazon’s Web Services (AWS)

public cloud infrastructure. Many cloud providers, including Amazon, provide services

that support the data structures selected in Axon. For example, Amazon provides a service

called Simple Notification System (SNS) that would support some aspects of the topic

data structure. However, there are some drawbacks with using this service. First, users

are limited to only 3,000 topics without additional authorization from Amazon. In our

microblogging application, a unique topic is required for each tag and user. In order to

provide this capability, Axon uses the Hazelcast project to provide distributed versions of

each structure (map, queue, topic). Changes to these data structures are communicated to

and from any connected clients via the SocketIO protocol as shown in Figure 5.3.

Since the Axon framework does not rely on the built-in cloud provider services for the

data structures, it must still remain dependable even in when the entire processing cluster

fails. Since Hazelcast is an in-memory distributed system, failure of the cluster would

result in complete data loss. Fortunately, Hazelcast provides a persistance API for maps

and queues. In Axon, this persistance API is connected to the database and storage services

provided by Amazon. DynamoDB is a NoSQL database, and this is the primary destination

for items inserted into maps and queues.

5.5 Applications

This section describes how the basic data structures in the Axon framework are layered

to create a secure microblogging application. The first example demonstrates how to

take the map data structure provided by Axon and enhance it to be compatible with the

ACE-trusted security model. The next example demonstrates how to build a ACE-trusted

remote procedure call protocol using Axon data structures. Finally, these relatively simple

building blocks are used to build a more complex messaging application called Critter.

This messaging application is compatible with the ACE-trusted security model, and could

be used as a building block in even more complex applications.
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5.5.1 Secure Map.

The secure map data structure interfaces with the regular map data structure provided

by Axon and provides all of the same functions. The difference is that the secure map

is initialized with a symmetric cryptographic key. The secure map uses this key in order

to provide confidentiality and integrity guarantees to the data that passes through it. As a

result, the secure map supports the ACE-trusted security model.

The secure map protects all three portions of a map: the map name, index keys4, and

values. When performing map functions, the secure map will first compute a MAC (using

the cryptographic key provided to the secure map) of the plaintext map name to create a

secure map name. This secure map name is then used to perform operations on a regular

map data structure. When performing a put operation, the secure map must protect both an

index key and a value. To protect the index key, a MAC is computed for the plaintext index

key and used as the secure index key. Since the MAC function is deterministic, plaintext

index keys will always map the same secure index keys as long as the cryptographic key

is the same. Then both the index key and the value are each encrypted using AEAD,

concatenated with a separating delimiter, and stored as the secure value. The reason that

the index key is encrypted and stored alongside the encrypted value is to support index key

enumeration operations. Since a MAC is used as the secure key, there is no way to “undo”

the MAC operation to recover the plaintext key. Instead, the secure map performs a key

enumeration on underlying map to get a set of secure key values. The secure map can than

get each secure index key’s respective secure value. Finally, the secure map can decrypt the

secure index key portion of the secure value, thereby recovering the plaintext index keys.

To perform get operations, the secure key is computed like before which returns the secure

value. The secure map can decrypt the encrypted value portion of the secure value.

4In order to avoid confusion, we use the terms cryptographic key and index key to refer to keys used for
encryption operations and map operations respectively
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Through the use of a cryptographic key, the secure map is able to provide

confidentiality and integrity guarantees. The availability of the map contents is supported

through the Axon interface to the cloud infrastructure. This demonstrates a simple example

of building an ACE-trusted data structure from one of the basic data structures provided by

Axon. For an application using a secure map, the focus is shifted to acquiring the right set

of cryptographic keys and not the mechanics of how the data is protected or stored.

5.5.2 Secure Remote Procedure Call.

In addition to creating secure data structures from the core data structures, it is also

possible to build secure protocols. One example is a simple remote procedure call (RPC)

protocol that leverages the queue data structure provided by Axon. The message sequence

for this protocol is shown in Figure 5.5. Just like the secure map, the secure RPC protocol is

initialized with a set of cryptographic keys. The keys allow the protocol to protect the data

when sending and receiving data from the Axon queues. The queues then provide a layer

of availability and durability. The current use case for the secure RPC mechanism is for a

pool of remote servers that share a common KP-PKE key pair. Any of these remote servers

is capable of fulfilling a request. Each local instance generates its own unique KP-PKE

pair. The protocol supports at least once semantics and resubmits requests after a specified

timeout period. In addition to the execute function, a broadcast function is available simply

by replacing queues with topics. Permission to execute functions can leverage the same

authentication protocol as the one described for data structure creation. Note that the

remote server does not require private keys in order to authenticate a request, so instances

of the remote server may run on the cloud infrastructure as long as the requested procedure

call does not require access to plaintext data.

5.5.3 Micro-Messaging.

Now that we have described some of the building blocks, we now describe the

structure of a relatively simple messaging application called Critter. Critter supports the
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basic messaging capabilities of popular microblogging applications such as Twitter and 

lnstagram. Each user has a public feed to which followers can subscribe. Users may tag 

messages by including the hashtag symbol# followed by a keyword of the user's choice. 

We refer to these hashtag keywords as topics. Users may then follow these tags for topics 

which interest them. Users may also direct messages to only be sent to specific users rather 

than their public feed by including the target users' handle preceded by the @ symbol. 

We 'll re 

Plaintext Messages 

Critter Application 

Secure Secure Secure user.mentions 
RPC RPC Map 

,L (PKG) (User) (messages) Initialization 
user.feed .. J .... .. J ..... 

Queue Queue Map Topic ; Queue Map 

Axon 

Cloud Infrastructure 

Figure 5.6: Critter Information Flow 

The structure of the Critter application is shown in Figure 5.6. The highlighted 

portions indicate where Critter uses Axon data structures directly rather than relying on 

secure components. When the critter application is fi rst started and before any messages 

are sent, a small set of public data is stored in an unsecure map. This map contains the 
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information needed to bootstrap the security for the rest of the system and consists of the

following:

• A public random value used when creating private keys from passwords (also known

as a salt)

• The public parameters for the CP-ABE

• A private key that has been encrypted using a CP-ABE policy that requires the

“CritterUser” attribute

Whenever a new user is created, that user receives an the “CritterUser” attribute from the

private key generator. This process is assumed to happen out-of-band. When a user logs

into the system, the user can use this attribute to recover the CP-ABE protected private

key stored in the public map. This key is used in a few places within the application.

Specifically it is used to access the secure map where the messages are stored.

Figure 5.7: General Critter Message Policy Structure

107



( message s e n t by u s e r @al ice )

=======================================

@bob What ’ s t h e s t a t u s o f today ’ s

c l i m a t e a s s e s s m e n t ? # s e n s i t i v e

# humanResources

Figure 5.8: Example message mapped to security policy

When a user sends a message, the application first parses the message to determine

if it contains any topics or if the message is directed to specific users. If the message

has any mentions, the message is considered to be private and the relevant users are

considered mentioned in the message. If there are no mentions, the message is public.

If the message contains topics, then the message is restricted. Otherwise the message

is unrestricted. Critter uses this information to build the MA-AHASBE policy based on

the general structure shown in Figure 5.7. If the message is private, all of the user handles,

including that of the sender, are combined in under an OR node in the policy. If the message

is restricted, then the topics are combined under an AND node. Finally, all messages

include the “CritterUser” attribute. This attribute is particularly useful for unrestricted,
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public messages. In this case, the “CritterUser” attribute is the only one in the policy and

is used to provide a baseline policy to protect the information from the CSP. The policy

enforces the condition that in order to decrypt, a user must possess as attributes:

• at least one of the handles used in the message (if any are used)

• all of the topics in the message (if any are used)

• the “CritterUser” attribute

This policy forces users to have all of the tagged topics as attributes in order to decrypt a

message. In Critter, this is a way to control who has access to certain topics of conversation.

Once the policy is built, Critter uses MA-AHASBE to create a corresponding

ciphertext. A universally unique identifier (UUID) is generated for the ciphertext and the

encrypted message is stored in a secure message map with the UUID as the index key. If

the message is public, the message UUID is then posted to the user’s feed, which is an

Axon topic. Any followers of this user will then receive the UUID and can then retrieve

the message from the secure map. If the message is private, the UUID is instead sent to an

Axon queue for each user mentioned in the message.

Critter uses the secure RPC mechanism described in the previous section in order to

request and receive attribute keys from the private key generator. Whenever a user receives

a message with topics it does not have attributes for, it issues a key request to the private key

generator. The private key generator determines if the user is allowed to access messages

with the request topic. If so, the PKG generates a key and sends it back to the user. If not,

a message is sent denying the request.

Consider the example shown in Figure 5.8. In this example, a user Alice with

the handle @alice publishes the message “@bob What’s the status of today’s

climate assessment? #sensitive #humanResources”. This is a private, restricted

message. Critter builds the policy shown in Figure 5.8, generates and stores the ciphertext
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in the secure message map with a fresh UUID as the key, and finally adds the message

to a queue named “@bob.mentions”. Whenever Bob comes online, he can check his

queue and retrieve the message. If he can satisfy the policy, he can then recover the

message. If not, he will send a request to the PKG for any missing attributes. Suppose

Alice instead wanted to send the message to anyone following her feed. In this case, Alice

would remove the mention “@bob” from the message. The resulting policy would then not

contain any mentions. The UUID would be sent to Alice’s feed topic “@alice.feed”.

Any followers would then receive the UUID and attempt the same decryption process as

previously described with Bob.

5.5.4 Experimental Results.

In this section, we examine the performance characteristics of Axon and Critter. The

performance can be be viewed from two perspectives. First, we look at the performance

impact to the user in terms of encryption and decryption time. Second we look at the impact

from the server perspective, specifically in the requirement to support the larger payloads

associated with encrypting the data using MA-AHASBE. In order to do this, we analyzed

a sample set of 450,000 messages from the Twitter message service. All experiments were

performed on machines running Windows 7 with Intel Xeon X5675 6-core processors and

32 GB of RAM connected on a local area network.

As described in the previous section, the number of topic tags and mention tags

determines the size of the access policy for a particular message. The size of the access

policy, in turn, influences the size of the ciphertext created by MA-AHASBE. The sample

database was analyzed to determine how many topic and mention tags occur in a message.

Some summary information is presented in Table 5.2. The table shows the number of topics

and mentions in terms of percentiles. For example, 99% of all the messages in the sample

contain five topic tags or less. The largest number of topics in any single tweet was 17. For
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mention tags, 99% of messages have six or less while the largest for a single message was

14. The final row shows the counts when both types of tags are combined.

Table 5.2: Summary Statistics

Category 50th percentile 95th percentile 99th percentile Max

Topics 0 2 5 17

Mentions 1 2 6 14

Combined 1 4 7 17

Another way to look at how the tags occur within a message is shown in Figures 5.9

and 5.10. These figures shown the percentiles of how many tags occur with respect to

one another. In both figures, we see that there is a substantial drop between the maximum

count relative to the 99% percentile case. This is particularly true when there are either zero

mention or zero topic tags. When there are zero topic tags, the largest observed number

of mention tags was 14, but 99% of messages had five mentions or less. When there are

zero mention tags, the largest observed number of topic tags was 17, but 99% of messages

had six mentions or less. The data also reflects the fixed 140 character limit of Twitter

messages. As the number of topic tags increase in a message, the number of mentions

decrease.

The number and type of tags in a message influence the amount of time to perform

encryption and decryption operations. For encryption operations, the performance scales

with the total number of tags. The performance of the encryption operation is shown in

Figure 5.11. The format of the figure follows the format of Figure 5.9 where each line

represents the percentile of mentions per topic. As shown in Table 5.2, 99% of messages

have five topics or less. In Figure 5.11 we see that for messages with five topics, encryption
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Figure 5.9: The number of mentions in a tweet per the number of tags based on percentiles.

For example, of all the sample tweets with exactly two topic tags, 95% have three mention

tags or less and 99% have six mention tags or less. All sample tweets with two topic tags

had ten mentions or less.

time time is typically at most around 85 milliseconds. As the number of topics increase

towards the maximum, the lines converge since there are fewer mention tags contributing

to the total. The worst case encryption times are under 140 milliseconds. The decryption

timings are shown in Figure 5.12. There is a clear linear scaling with the number of topics,

but there is not much variation with the number of mentions. Recall that the security policy

is built by combining the mention tags under an OR gate and the topic tags under an AND

gate (see Figure 5.7). The decryption time scales with the number of nodes required for

decryption, so even though there may be several mention tags only one is required for

decryption. It is also of note that the decryption time is an order of magnitude larger for
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Figure 5.10: The number of topic tags in a tweet per the number of mentions based on

percentiles. For example, of all the sample tweets with exactly two mention tags, 95%

have three mention tags or less and 99% have five mentions or less. All sample tweets with

two mentions had 14 topic tags or less.

decryption versus encryption. This is due to an expensive mathematical operation called

a bilinear pairing that is required for decryption. In the worst case, it takes just over 1.2

seconds to decrypt a policy with 17 topic tags. However, since 99% of messages have five

topics or less, most messages can be decrypted in around 500 milliseconds.

From the server perspective, the biggest impact on performance is the size of the

payload. A Twitter message represents a type of worst case in terms of MA-AHASBE

overhead. First, the access policy is potentially different for each message and so it must be
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Figure 5.11: The amount of time to encrypt a tweet for a given number of topics and the

percentiles of mentions.

included. Second, since the size of the plaintext message is so small, the relative overhead

of MA-AHASBE is significant. The ciphertext sizes are shown in Figure 5.13. Again,

for 99% of messages the ciphertext size is under 3,500 bytes, but can be as large as 5,200

bytes in the worst case. To see the effect on server performance, several client machines

are used to saturate the system by sending as many messages of a fixed size as possible

in a 60 second window. Figure 5.14 shows the effects of increasing the number of servers

as well as increasing the size of the payload. Each box plot is the result of five samples.

As expected, increasing the number of servers increases the throughput while increasing

payload size decreases throughput. Based on the data from Figure 5.13, we see that most

messages will fall under 3,500 bytes. While this has a modest impact on performance,
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Figure 5.12: The amount of time to decrypt a tweet for a given number of topics and the

percentiles of mentions.

we believe there are situations where the security capabilities of a system such as Critter

outweigh the performance impact.

5.6 Conclusions and Future Work

In this chapter, we have proposed a security model that reduces the trust required in a

CSP to availability operations. To make development of applications easier in this restricted

model, we developed a framework called Axon that uses a small set of data structures:

maps, queues, topics. Axon uses the cloud to provided availability and durability for these

data structures. On the client, additional secure data structures and protocols are created

using a layered approach. Finally, a secure messaging application Critter was built using

the Axon framework.
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Figure 5.13: The size of ciphertext for a given number of topics and the percentiles of

mentions.

An aspect of dependability that isn’t currently addressed by the Axon framework

is being able to function even when the connection to the CSP is temporarily lost.

One way to improve this aspect of dependability in this area is to cache as much data

locally on the clients as possible. This benefits performance in many ways. First, if the

connection to the CSP is lost, access to at least a portion of the relevant data may still

be accessible. Meaningful computations may still be accomplished while the connection

is down. Secondly, caching data on the client increases the availability of the data if the

cloud version becomes corrupted. Finally, there is a performance advantage as the data is

quicker to access since the client does not need to make costly network calls to the cloud

in order to access the data it needs. An important negative consequence of this approach is

it increases the storage burden on the client. However, many client machines are desktops

116



S1.P1 S1.P2 S1.P3 S2.P1 S2.P2 S2.P3 S3.P1 S3.P2 S3.P3 S4.P1 S4.P2 S4.P3 S5.P1 S5.P2 S5.P3

2000

3000

4000

5000

6000

7000

8000

9000

Number of Servers / Payload Size

T
h

ro
u

g
h

p
u

t
(m

sg
/s

ec
)

S1.P1
S1.P2
S1.P3
S2.P1
S2.P2
S2.P3
S3.P1
S3.P2
S3.P3
S4.P1
S4.P2
S4.P3
S5.P1
S5.P2
S5.P3

Figure 5.14: Throughput Performance per Number of Servers and Payload Size. The

dashed lines represent the sample mean and the solid line indicates the median. The S

label indicates the number of servers and the P label indicates the payload size. P1=140

bytes, P2=3,500 bytes, P3=5,000 bytes.

where local storage is cheap. Even mobile clients can have significant amounts of locally

available storage. For mobile clients, calls to local storage will also typically be more

power efficient than requests that must go over the network. One approach would be to

incorporate conflict-free replicated data types (CDRT [34]) within Axon.

Another improvement we wish to make is to model the protocols in Axon using

a formal modeling language such as SPIN [57] or TLA+[68]. For small applications

like Critter, a formal model may not be necessary. However, as applications increase in

size and complexity, a formal model can help ensure that all data is processed through a

security mechanism (such as a secure data structure or protocol) before being sent to a core,

unprotected data structure.

117



Finally, we would like to extend the Axon prototype to include different cloud

implementation designs as well as to build a testing suite in order to evaluate the

performance of each implementation. The current design relies on Hazelcast, but we would

like to use some of the other popular messaging frameworks. Since the client side portion

of Axon is insulated from the actual cloud side implementation, the same application code

could be used for each cloud implementation.
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VI. Summary of Contributions and Further Research

This chapter concludes this document by presenting the contributions of this research

as well as providing some thoughts on the direction of future work. The cornerstone

contribution of this research is the encryption scheme MA-AHASBE. Building on this

cornerstone, the other contribution of this research is the demonstration of how MA-

AHASBE can be used to build applications that can leverage public cloud computing

resources. Future research efforts can build on this framework, expanding the types of

services that can be provided and improving the computational cost for doing so.

6.1 Contributions

The first significant contribution of this research is the development and implemen-

tation of MA-AHASBE. The MA-AHASBE system presents several significant develop-

ments in attribute-based encryption research. There are many ABE systems that individ-

ually have each of the characteristics available with MA-AHASBE. However, to the best

of my knowledge, MA-AHASBE is the only system that incorporates all of these in a

single system. Attribute-sets have been shown to be a useful and practical extension of

ABE [17]. MA-AHASBE is the only known multi-authority extension of ASBE. In fact,

the only known published work to extend ASBE is the HASBE system which provides a

type of hierarchical extension. The hierarchical mechanism in HASBE does not provide

for hierarchical autonomy, which as argued in Chapter 4 is a requirement for an efficient

implementation of ABAC with an ABE. Aside from the theoretical contributions of MA-

AHASBE, the implementation of MA-AHASBE (described in Appendix B) stands on its

own as a novel contribution. The implementation shows that implementing MA-AHASBE

can be efficient and provides insight into the cost of policy size, number of users in the

system, and the penalty involved with protecting attributes.
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The second significant contribution of this research is the application of MA-

AHASBE to the area of microblogging. Applying MA-AHASBE in this way brought

about other contributions. Two new security models were developed, A-trusted and ACE-

trusted, with ACE-trusted being the model most applicable to public cloud computing.

These models focus on availability as the key trust requirement between a client and

a cloud service provider. The availability requirements are defined in detail through

the F-SCRAWL operations, a novel formulation. The A-trusted model only has the

availability trust, while the ACE-trusted model adds certain computability and access

control enforcement requirements. While this does increase the trust required in a CSP,

the efficiency gains can be significant and the tradeoff in security seems reasonable for

reputable CSPs. Neither model requires confidentiality trust, so CSPs cannot learn the

contents of data. In order to support this model, the Axon framework is presented.

This framework demonstrates a layered, data structure oriented approach to building

complex, secure data structures and protocols. This method is used to build Critter, a

secure microblogging application. Performance results indicate that while there is a cost

associated with enforcing an ACE-trusted model in Critter versus processing the data in

plaintext, the cost is not unreasonable and the benefits in security can be significant. This

is particularly important if the messages being shared in Critter are sensitive or require

complex access control policies.

6.2 Future Work

This work will hopefully new doors and new ways of thinking about how cloud

services can be secured. Already there are some tangential efforts at AFIT that build

on the work presented in this research. One effort is looking at techniques to speed up

pairing computations using graphics hardware. Research already exists that accomplishes

this with composite order groups [110], but in order to work with MA-AHASBE the

techniques would need to be adopted for prime order groups and Type-3 pairings. If
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successful, this could improve the efficiency and scale of a MA-AHASBE implementation.

Also, similar techniques used in MA-AHASBE for combining ASBE and AHIBE could

be used with the system described in [90] which uses only standard assumptions, instead

of the non-standard assumptions used in MA-AHASBE. This extra boost in security

confidence comes at a potentially significant computational cost. This is because what

where single term multiplications in MA-AHASBE, now become vector multiplications

in [90]. The capability to speed up pairing computations using graphics hardware could

help mitigate this extra computational cost. Cloud resources that include very powerful

graphics hardware are becoming more commonplace from their use in scientific computing

applications. So the improvement of pairing computations using graphics hardware fits

seamlessly in the secure cloud computing paradigm.

Another interesting application of this approach is in software version control. Current

research at AFIT is looking at ways to secure the popular version control software git.

Similar to the application in Chapter 5, this approach would mesh well with MA-AHASBE.

Specifically, MA-AHASBE could be used to provide fine-grained attribute based control to

particular files or folders for both read and write access. Also, it is possible that the concepts

used in securing git could be extended and applied to a fully version controlled, secure file

system. Finally, MA-AHASBE can be used with many cryptographic systems which are

based on symmetric keys such as encrypted search and group collaboration (additional

notes on these application areas are provided in Appendix C).

6.3 Conclusion

The end result of the contributions presented in this research is to support the thesis

statement stated in Chapter 1:

Efficient techniques exist to support the secure use of public cloud computing

resources by a large, federated enterprise.
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MA-AHASBE combines with a hybrid cloud computing model where the public cloud

service providers operated under an ACE-trusted model of security. This forms the

backbone of key management that is designed to support an ABAC paradigm in a large,

federated enterprise. The application focused contributions support the claim that this

approach can be successfully applied to tasks such as microblogging. The future work

highlights areas where additional services such as search, real-time collaboration and

version control can be added. It also may be possible to improve the efficiency of the

current approach through the use of graphics hardware. Overall, the results of this type

of research will hopefully contribute to a new approach to securing sensitive information

while being able to take advantage of the ever decreasing costs of cloud computing.
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Appendix A: MA-AHASBE Security Proof Details

A.1 Notation and Preliminaries

This proof describes group operations assuming they are written multiplicatively, even

though we write some groups such as G1 additively. The concepts apply regardless of

the notation for the groups. For example, the variable s in the term sP1 is referred to as

being “in the exponent” of P1. The proof demonstrates security under chosen plaintext

attack or CPA. The CPA construction is made by reversing the CCA transform used in the

construction given in §4.4 by applying the following changes:

• Remove CTcom and CTtag from the ciphertext CT

• Remove Cσ from CT

• Replace k′ in the global leaf nodes with the message m ∈ GT

This modified encryption algorithm is referred to as EncryptCPA. Since CTcom and CTtag

are no longer in the ciphertext, there is no need to perform the checks to make sure they

are consistent. Also, the new message recovery algorithm for m becomes the old recovery

algorithm for k′. Ciphertexts created using EncryptCPA are labeled CTCPA. For this proof,

the ciphertexts do not include the plaintext policies as this would make it trivial for the

adversary to distinguish the message-policy pairs. The adversary has access to the policies

since they are included in the adversary’s submission, they are just not returned in the

encryption.

For ease of presentation, the instantations below show the simulator choosing the

global parameters. In particular, the simulator knows the global secret key GS K. This

allows the simulator to execute the user key generation algorithm that requires the user

identifier requested by the adversary. However, this also allows the simulator to facilitate

collusion as described in §4.5.2.3, since it is in effect acting as the trusted central authority.
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In order to achieve the security required by the security game in §4.5.1, the simulator

cannot know these values. This can be achieved using a secure computation protocol,

and the method chosen affects the overall set of security assumptions. The simulator

and adversary can participate in a two-party secure computation protocol (as described

in §4.3.2.1) to compute the values according to the algorithms in global setup. Note that

this can be done adaptively as the adversary is requesting keys. In this approach, neither

the simulator nor the adversary know the components of GS K, but merely have access

to the global parameters which includes the user identifier parameters. However, any

cryptographic assumptions made by the two-party secure computation protocol (for which

there are standard model schemes such as [23]) must be added to the assumptions presented

in §4.5.3.

Each lemma presented here follows the same pattern. First the cryptographic

assumption is presented. Then the simulator instantiates the global and local authority

parameters using the terms in the assumption. The setup is followed by the key extraction

phases. Since there is no computational difference between Phase 1 and Phase 2 as

described in MA-AHASBE security game, these phases are presented together. Also, the

computations are only shown for domain key extractions and not for user key extractions.

The adversary may request a key of either type. If the adversary requests a domain key,

the simulator follows the procedures described in the proof and returns the result. If the

adversary requests a user key, the simulator first creates the corresponding domain key

using the proof procedure, and then uses the unmodified algorithm UserKeyGeneration to

create the user key. Recall that a user key inherits the semi-functional properties (normal,

full, partial) of the domain key that creates it. The unique portion of either type of key

extraction query is the domain key generation and so that is all that is presented.

Next, the adversary submits two message-policy pairs for the challenge phase. Recall

that the two policies must be structurally equivalent. In MA-AHASBE, the q terms in the
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ciphertext represent the splitting of the secret s according to the policy. Since s is not

typically directly available to the simulator, the computation for each q term must now be

done in the exponent. The terms in the polynomial can be represented by gan xp
(where

g is a generator and an is the randomly chosen coefficient) with the addition of terms by

ga0ga1 xga2 x2
ga3 x3

... = ga0+a1 x+a2 x2+a3 x3.... If the generator g and the initial term gs are given,

then the remainder of the gqn(0) terms can be calculated using the same method described in

the EncryptCPA algorithm in the exponent rather than directly. Therefore, in the proofs we

give the computations for the initial values containing gs. The computation for the relevant

generator g is nearly identical to what is shown for gs, only dropping the s in each term

where it appears. In each lemma, the relevant terms without s values are present in the

assumption. The simulator can then calculate the relevant gqn(0) values according to the

policy. The result remains in the exponent since this is what the ciphertext requires and

since the simulator cannot compute the qn(0) values directly.

In each computational section, the actions of the simulator are presented in the same

order. First the simulator chooses some set of parameters randomly. The simulator then

explicitly sets some set of parameters. These are the parameters that the simulator can

explicitly compute and usually represent components that will be returned to the adversary.

Because of the explicit computations, some parameters are implicitly set. Usually the

simulator cannot directly compute these parameters, but they are useful in understanding

the limitations of the simulator for the given lemma. Finally, each lemma concludes with

the adversary submitting a guess for which message-policy was chosen. A short description

is then given that explains how this guess corresponds to the security games presented in

Section 5. Note that at any time during the key extraction phases, the simulator tracks

the requests and can determine if the adversary has requested keys that allow for a trivial

decryption. If this is the case, the simulator aborts. The simulator can also detect if the
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policies submitted for the challenge are not structurally equivalent and also aborts in this

case.

The following shorthand will be used throughout the proofs where id represents a

domain, attr represents an attribute, and yi, j, ui, λi, j, νi represent parameters chosen by the

simulator during the proof:

id = 〈id1, ..., id`〉

attr = 〈attr1, ..., attr`〉

hi(id) =
∑̀
j=1

yi, jid j + ui

gi(id) =
∑̀
j=1
λi, jid j + νi

A.2 Lemma 4.1.

|Pr[Xreal] − Pr[X0]| ≤ εLW1

A.2.1 Assumption.

LW1 = (F1, bsF1, sF1, aF1, ab2F1, bF1, b2F1, asF1, b2sF1, b3F1, b3sF1, F2, bF2,Z1)

Let Z1 = (ab2s + γ)F1. It is hard to decide whether γ = 0 (Z1 is real) or γ ∈U Zp (Z1 is

random).

A.2.2 Setup(λ, nauth).

B receives an instance of LW1 and chooses:

p, e,H , h based on λ

αg, βid, {β j} j∈[0,rmax], y, {αi, ki, oi, v′i , {yi, j, λi, j} j∈[1,hmax], ui, νi}i∈[1,nauth]
U
←− Z∗p

Qid,Uid
U
←− G2

B explicitly sets ∀i ∈ [1, nauth]:

P1 = b2F1 + yF1

aiP1 = ki((ab2F1) + y(aF1))

τiP1 = oi(b3F1) + kiv′i(ab2F1) + oiy(bF1) + kiv′iy(aF1)
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Qi,1, j = {λi, jo2
i (b2F1) + yi, jF1} j∈[1,hmax]

aiQi,1, j = {ki(λi, jo2
i (ab2F1) + yi, j(aF1))} j∈[1,hmax]

τiQi,1, j = {λi, jo3
i (b3F1) + kiv′iλi, jo2

i (ab2F1) + oiyi, j(bF1) + kiv′iyi, j(aF1))} j∈[1,hmax]

Ui,1 = νio2
i (b2F1) + uiF1

aiUi,1 = ki(νio2
i (ab2F1) + ui(aF1))

τiUi,1 = oiνio3
i (b3F1) + kiv′iνio2

i (ab2F1) + oiui(bF1) + kiv′iui(aF1)

Vi,2 = oi(bF2)

V ′i,2 = v′i F2

e(P1, Pi,2)αi = (e(o2
i (b2F1) + b2F1 + yF1, yF2)e(o2

i (b3F1), bF2))αi

GS K: ( 1
β0 ,

−αg

β0 ,
αg

βid
,Qid,Uid)

B implicitly sets ∀i ∈ [1, nauth]:

ai = kia

vi = bi = oib

τi = oib + kiav′i = bi + aiv′i = vi + aiv′i

Pi,2 = (b2
i + y)F2

Qi,2, j = {λi, jo2
i (b2F2) + yi, jF2} j∈[1,hmax]

Ui,2 = νio2
i (b2F2) + uiF2

B publishes for all players including A :

GP: (p, e,H , h, P1, F2, βidP1,
−αg

β0
F2, {β jP1,

1
β j

F2} j∈[0,rmax], e(P1, F2)αg)

APi: {aiP1, τiP1,Ui,1, aiUi,1, τiUi,1, {Qi,1, j, aiQi,1, j, τiQi,1, j} j∈[1,hmax], e(P1, Pi,2)αi}i∈[1,nauth]

A.2.3 Phases 1 and 2.

A makes q key extract queries. B does not know {Pi,2,Qi,2, j,Ui,2}i∈[1,nauth]; j∈[1,hmax] which are

the master secrets for each authority.
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B receives a key query for a domain with id = (id1, ..., id`) under authority i where

i ∈ [1, nauth] and chooses:

r′1, r
′
2, r
′
3, r
′
4, (z

′
1, j, z

′
2, j) j∈[`+1,h′],w1,w2

U
←− Z∗p

B explicitly sets ∀ j ∈ [` + 1, h′]:

K1,1 = w1yF2 + r′1oi(bF2)

K1,2 = v′i K1,3

K1,3 = r′1F2 − w1oi(bF2)

K2,1 = αiyF2 + r′2oi(bF2) + w1hi(id)F2

K2,2 = v′i K2,3

K2,3 = r′2F2 − oi(w1gi(id) + αi)(bF2)

D j,1 = w1yi, jF2 + z′1, joi(bF2)

D j,2 = v′i D j,3

D j,3 = z′1, jF2 − w1λi, joi(bF2)

J1,1 = w2yF2 + r′3oi(bF2)

J1,2 = v′i J1,3

J1,3 = r′3F2 − w2oi(bF2)

J2,1 = r′4oi(bF2) + w2hi(id)F2

J2,2 = v′i J2,3

J2,3 = r′4F2 − w2oigi(id)(bF2)

E j,1 = w2yi, jF2 + z′2, joi(bF2)

E j,2 = v′i J2,3

E j,3 = z′2, jF2 − w2λi, joi(bF2)
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B implicitly sets:

r1 = r′1 − w1oib

r2 = r′2 − oib(w1gi(id) + αi)

r3 = r′3 − w2oib

r4 = r′4 − w2gioib(id)

z1, j = z′1, j − w1λi, joib

z2, j = z′2, j − w2λi, joib

If the request was for a domain key, B returns the components computed above to A

as the domain key. Otherwise B computes the user key according to the algorithm

UserKeyGeneration and returns the result to A as the user key.

A.2.4 Challenge.

B receives two message-policy pairs (M0, P∗0) and (M1, P∗1).

B chooses:

β∗
U
←− {0, 1}

B explicitly sets (where attrc ranges over each leaf node attribute in the policy):

sβdP1 = βd(b2sF1 + y(sF1))

e(P1, Pi,2)sαi = (e(o2
i (b2sF1) + b2sF1 + y(sF1), yF2)e(o2

i (b3sF1), bF2))αi

e(P1, F2)sαg = e(b2sF1 + y(sF1), F2)αg

C1,1 = sH1(attrc) = o2
i gi(attrc)(b2sF1) + hi(attrc)(sF1)

C1,2 = asH1(attrc) + µσF1 = o2
i kigi(attrc)Z1 + kihi(attrc)(asF1)

C1,3 = −τsH1(attrc)−µσV ′1 = −o3
i gi(attrc)(b3sF1)−oihi(attrc)(bsF1)− kio2

i v′igi(attrc)Z1−

kiv′ihi(attrc)(asF1)

C2,1 = sP1 = b2sF1 + y(sF1)

C2,2 = asP1 + µF1 = kiZ1 + yki(asF1)
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C2,3 = −τsP1 − µV ′1 = −oi(b3sF1) − yoi(bsF1) − kiv′iZ1 − kiv′i(asF1)

B implicitly sets:

µ = 0 or random

σ = gi(attrc)

B encrypts Mβ∗ under the policy P∗β∗ using the values above and the algorithm EncryptCPA

and returns the result ĈT CPA. Note that if Z1 = ab2sF1 then the ciphertext is normal.

Otherwise, Z1 = (ab2s+µ)F1 for some µ ∈U Zp and the ciphertext contains semi-functional

leaf nodes with µ = µ and σ = gi(attrc). Finally, note that since B cannot compute aF2, B

cannot compute a semi-functional key in order to determine if CTCPA is semi-functional.

A.2.5 Guess.

A returns its guess β′ to B

If Z1 is real, ĈT CPA is normal and therefore B is simulating Gamereal. Otherwise, Z1 is

random and ĈT CPA is semi-functional and therefore B is simulating Game0. If B returns

1 if β∗ = β′ and 0 otherwise, then it can solve the LW1 problem with advantage:

AdvLW1
B = |Pr[β∗ = β′|Z1 is real] − Pr[β∗ = β′|Z1 is random]| = |Pr[Xreal] − Pr[X0]|

A.3 Lemma 4.2.

|Pr[Xk−1,1] − Pr[Xk,0]| ≤ εLW2 for 1 ≤ k ≤ q

A.3.1 Assumption.

LW2 = (F1, dF1, d2F1, bxF1, dbxF1, d2xF1, F2, dF2, bF2, cF2,Z2)

Let Z2 = (bc + γ)F2. It is hard to decide whether γ = 0 (Z2 is real) or γ ∈U Zp (Z2 is

random).
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A.3.2 Setup(λ, nauth).

B receives an instance of LW2 and chooses:

p, e,H , h based on λ

αg, βid, {β j} j∈[0,rmax], {αi, ai, ki, oi, yv,i, v′i , {yi, j, λi, j} j∈[1,hmax], ui, νi}i∈[1,nauth]
U
←− Z∗p

Qid,Uid
U
←− G2

B explicitly sets ∀i ∈ [1, nauth]:

P1 = dF1

aiP1 = ai(dF1)

τiP1 = d2F1 + yv,i(dF1)

Qi,1, j = {λi, j(dF1) + yi, jF1} j∈[1,hmax]

aiQi,1, j = {ai(λi, j(dF1) + yi, jF1)} j∈[1,hmax]

τiQi,1, j = {λi, j(d2F1) + λi, jyv,i(dF1) + yi, j(dF1) + yi, jyv,iF1} j∈[1,hmax]

Ui,1 = νi(dF1) + uiF1

aiUi,1 = ai(νi(dF1) + uiF1)

τiUi,1 = νi(d2F1) + νiyv,i(dF1) + ui(dF1) + uiyv,iF1

Vi,2 = −aioi(bF2) + dF2 + yv,iF2

V ′i,2 = oi(bF2)

Pi,2 = ki(dF2)

Qi,2, j = {λi, j(dF2) + yi, jF2} j∈[1,hmax]

Ui,2 = νi(dF2) + uiF2

e(P1, Pi,2)αi = e(dF1, ki(dF2))αi

GS K: ( 1
β0 ,

−αg

β0 ,
αg

βid
,Qid,Uid)

B implicitly sets ∀i ∈ [1, nauth]:

bi = oib
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vi = −aibi + d + yv,i = −aioib + d + yv,i

v′i = bi = oib

τi = d + yv,i

B publishes for all players including A :

GP: (p, e,H , h, P1, F2, βidP1,
−αg

β0
F2, {β jP1,

1
β j

F2} j∈[0,rmax], e(P1, F2)αg)

APi: {aiP1, τiP1,Ui,1, aiUi,1, τiUi,1, {Qi,1, j, aiQi,1, j, τiQi,1, j} j∈[1,hmax], e(P1, Pi,2)αi}i∈[1,nauth]

A.3.3 Phases 1 and 2.

A makes q key extract queries labeled qθ where θ ∈ [1, q]. If θ < k a semi-functional key

is returned and if θ > k a normal key is returned. B creates semi-functional keys using the

master secret, ai and F2. From Z2, if γ = 0 then the key is normal, otherwise if γ ∈U Zp

then the key is partially semi-functional with γ1 = γ, π = gi(attrc,k) and πi, j = λi, j.

B chooses:

w′1, r
′
2, (z

′
1, j) j∈[`+1,h′]

U
←− Z∗p

For θ = k, B computes S1 ∀ j ∈ [` + 1, h′]:

K1,1 = w′1P2 − aiZ2 + yv,i(cF2)

K1,2 = Z2

K1,3 = cF2

K2,1 = αiP2 +w′1(gi(attrc,k)(dF2)+hi(attrc,k)F2)+r′2V2−aigi(attrc,k)Z2 +yv,igi(attrc,k)(cF2)−

hi(attrc,k)(cF2)

K2,2 = r′2V ′2 + gi(attrc,k)Z2

K2,3 = r′2F2 + gi(attrc,k)(cF2)

D j,1 = w′1Q2, j + z′1, jV2 − yi, j(cF2) − aiλi, jZ2 + yv,iλi, j(cF2)

D j,2 = z′1, jV
′
2 + λi, jZ2
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D j,3 = z′1, jF2 + λi, j(cF2)

B computes S2 normally.

B implicitly sets ∀ j ∈ [` + 1, h′]:

w1 = w′1 − c

r1 = c

r2 = r′2 + gi(attrc,k)c

z1, j = z′1, j − λi, jc

A.3.4 Challenge.

B receives two message policy pairs (M0, P∗0) and (M1, P∗1).

B chooses:

β∗
U
←− {0, 1}

B explicitly sets (where attrc ranges over each leaf node attribute in the policy):

sβdP1 = βd(dbxF1)

e(P1, Pi,2)sαi = e(dbxF1, kidF2)αi

e(P1, F2)sαg = e(dbxF1, F2)αg

C1,1 = sH1(attrc) = gi(attrc)(dbxF1) + hi(attrc)(bxF1)

C1,2 = asH1(attrc) + µσF1 = aigi(attrc)(dbxF1) + aihi(attrc)(bxF1) − gi(attrc)(d2xF1)

C1,3 = −τsH1(attrc)−µσV ′1 = −yv,igi(attrc)(dbxF1)−hi(attrc)(dbxF1)−yv,ihi(attrc)(bxF1)

C2,1 = sP1 = dbxF1

C2,2 = asP1 + µF1 = ai(dbxF1) − d2xF1

C2,3 = −τsP1 − µV ′1 = −yv,i(dbxF1)
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B implicitly sets:

s = bx

µ = −d2x

σ = gi(attrc)

B encrypts Mβ∗ under the policy P∗β∗ using the values above and the algorithm EncryptCPA

and returns the result ĈT CPA.

A.3.5 Guess.

A returns its guess β′ to B

If Z2 is real, B is simulating Gamek−1,1. Otherwise, Z2 is random and B is simulating

Gamek,0. If B returns 1 if β∗ = β′ and 0 otherwise, then it can solve the LW2 problem with

advantage:

AdvLW2
B = |Pr[β∗ = β′|Z2 is real] − Pr[β∗ = β′|Z2 is random]| = |Pr[Xk−1,1] − Pr[Xk,0]|

A.4 Lemma 4.3.

|Pr[Xk,0] − Pr[Xk,1]| ≤ εLW2 for 1 ≤ k ≤ q

This is the same procedure as Lemma 2 except that S2 is used rather than S1. This is

easily done since the only difference between S1 and S2 is that the latter does not include

αiP2. Since αiP2 is explicity calculated, it is straightfoward to remove. S1 is made semi-

functional for every key extraction query.

A.5 Lemma 4.4.

|Pr[Xq,1] − Pr[XM−random]| ≤ εDBDH−3
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A.5.1 Assumption.

DBDH-3 = (F1, aF1, bF1, sF1, F2, aF2, bF2, sF2,ZT )

Let ZT = e(F1, F2)abs+γ. It is hard to decide whether γ = 0 (ZT is real) or γ ∈U Zp (ZT is

random).

A.5.2 Setup(λ, nauth).

B receives an instance of DBDH-3 and chooses:

p, e,H , h based on λ

αg, βid, {β j} j∈[0,rmax], y, {ki, vi, v′i , {yi, j} j∈[1,hmax], ui}i∈[1,nauth]
U
←− Z∗p

Qid,Uid
U
←− G2

B explicitly sets ∀i ∈ [1, nauth]:

P1 = yF1

aiP1 = yki(aF1)

τiP1 = viy(F1) + kiv′iy(aF1)

Qi,1, j = {yi, jP1} j∈[1,hmax] = {yi, jy(F1)} j∈[1,hmax]

aiQi,1, j = {yi, jyki(aF1)} j∈[1,hmax]

τiQi,1, j = {viyi, jy(F1) + kiv′iyi, jy(aF1)} j∈[1,hmax]

Ui,1 = uiP1 = uiy(F1)

aiUi,1 = kiuiy(aF1)

τiUi,1 = viuiy(F1) + kiv′iuiy(aF1)

Vi,2 = viF2

V ′i,2 = v′i F2

Pi,2 = kiy(F2)

Qi,2, j = {yi, jy(F2)} j∈[1,hmax]
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Ui,2 = uiy(F2)

e(P1, Pi,2)αi = e(aF1, bF2)k2
i y2

GS K: ( 1
β0 ,

−αg

β0 ,
αg

βid
,Qid,Uid)

B implicitly sets ∀i ∈ [1, nauth]:

ai = kia

αi = aib

τi = vi + aiv′i

B publishes for all players including A :

GP: (p, e,H , h, P1, F2, βidP1,
−αg

β0
F2, {β jP1,

1
β j

F2} j∈[0,rmax], e(P1, F2)αg)

APi: {aiP1, τiP1,Ui,1, aiUi,1, τiUi,1, {Qi,1, j, aiQi,1, j, τiQi,1, j} j∈[1,hmax], e(P1, Pi,2)αi}i∈[1,nauth]

A.5.3 Phases 1 and 2.

A makes a number of key extract queries. Note that B does not know αi or αiF2 and

therefore cannot create a normal key.

B receives a key query for a domain with id = (id1, ..., id`) under authority i where

i ∈ [1, nauth] and chooses:

r′1, r
′
2, r
′
3, r
′
4, (z

′
1, j, z

′
2, j, (π j), η j) j∈[`+1,h′],w1,w2, γ

′
1, γ1, γ2, η

U
←− Z∗p

B explicitly sets ∀ j ∈ [` + 1, h′]:

K1,1 = w1Pi,2 + r1Vi,2 − γ1ki(aF2)

K1,2 = r1V ′i,2 + γ1F2

K1,3 = r1F2

K2,1 = γ′1ki(aF2) + w1hi(attr)Pi,2 + r2Vi,2

K2,2 = r2V ′i,2 + y(bF2) − γ′1F2
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K2,3 = r2F2

D j,1 = w1Qi,2, j + z1, jVi,2 − γ1π jki(aF2)

D j,2 = z1, jV ′i,2 + γ1π jF2

D j,3 = z1, jF2

J1,1 = w2Pi,2 + r3Vi,2 − γ2ki(aF2)

J1,2 = r3V ′i,2 + γ2F2

J1,3 = r3F2

J2,1 = −γ′2ηki(aF2) + w2hi(attr)Pi,2 + r4Vi,2

J2,2 = r4V ′i,2 + γ2ηF2

J2,3 = r4F2

E j,1 = w2Qi,2, j + z2, jVi,2 − γ2η jki(aF2)

E j,2 = z2, jV ′i,2 + γ2η jF2

E j,3 = z2, jF2

B implicitly sets:

aiγ
′
1 = by − γ1π

A.5.4 Challenge.

B receives two message policy pairs (M0, P∗0) and (M1, P∗1).

B chooses:

β∗
U
←− {0, 1} µ′

U
←− Z∗p

B explicitly sets (where attrc ranges over each leaf node attribute in the policy):

sβdP1 = βdy(sF1)

e(P1, Pi,2)sαi+kiγ = Zki
T

e(P1, F2)sαg = e(y(sF1), F2)αg
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C1,1 = sH1(attrc) = yhi(attrc)(sF1)

C1,2 = asH1(attrc) + µσF1 = hi(attrc)µ′F1

C1,3 = −τsH1(attrc) − µσV ′1 = −viyhi(attrc)(sF1) − v′ihi(attrc)µ′F1

C2,1 = sP1 = y(sF1)

C2,2 = asP1 + µF1 = µ′F1

C2,3 = −τsP1 − µV ′1 = −yvi(sF1) − v′iµ
′F1

B implicitly sets:

s = s

µ = µ′ − aisy

σ = hi(attrc)

B encrypts Mβ∗ under the policy P∗β∗ using the values above and the algorithm EncryptCPA

and returns the result ĈT CPA.

A.5.5 Guess.

A returns its guess β′ to B

If ZT is real, B is simulating Gameq,1. Otherwise, ZT is random and B is simulating

Game f inal. If B returns 1 if β∗ = β′ and 0 otherwise, then it can solve the DBDH-3 problem

with advantage:

AdvDBDH−3
B = |Pr[β∗ = β′|ZT is real] − Pr[β∗ = β′|ZT is random]| = |Pr[Xq,1] − Pr[XM−random]|

A.6 Lemma 4.5.

|Pr[XM−random] − Pr[X f inal]| ≤ εA1
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A.6.1 Assumption.

A1 = (F1, zF1, dzF1, azF1, adzF1, szF1, F2, zF2, aF2, xF2, (dz − ax)F2,Z1)

Let Z1 = csdzF1. It is hard to decide whether c = 1 (Z1 is real) or c ∈U Zp (Z1 is random).

A.6.2 Setup(λ, nauth).

B receives an instance of A1 and chooses:

p, e,H , h based on λ

αg, βid, {β j} j∈[0,rmax], {αi, ki, oi, vi, v′i , {yi, j} j∈[1,hmax], ui}i∈[1,nauth]
U
←− Z∗p

Qid,Uid
U
←− G2

B explicitly sets ∀i ∈ [1, nauth]:

P1 = zF1

aiP1 = ki(azF1)

τiP1 = vi(zF1) + kiv′i(azF1)

Qi,1, j = {yi, j(dzF1)} j∈[1,hmax]

aiQi,1, j = {kiyi, j(adzF1)} j∈[1,hmax]

τiQi,1, j = {viyi, j(dzF1) + kiv′iyi, j(adzF1)} j∈[1,hmax]

Ui,1 = ui(dzF1)

aiUi,1 = kiui(adzF1)

τiUi,1 = vi(dzF1) + kiv′i(adzF1)

Vi,2 = viF2

V ′i,2 = v′i F2

Pi,2 = oizF2

e(P1, Pi,2)αi = e(zF1, oi(zF2))αi

GS K: ( 1
β0 ,

−αg

β0 ,
αg

βid
,Qid,Uid)
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B implicitly sets ∀i ∈ [1, nauth]:

ai = kia

zi = oiz

τi = vi + aiv′i

Qi,2, j = {yi, j(dzF2)} j∈[1,hmax]

Ui,2 = ui(dzF2)

B publishes for all players including A :

GP: (p, e,H , h, P1, F2, βidP1,
−αg

β0
F2, {β jP1,

1
β j

F2} j∈[0,rmax], e(P1, F2)αg)

APi: {aiP1, τiP1,Ui,1, aiUi,1, τiUi,1, {Qi,1, j, aiQi,1, j, τiQi,1, j} j∈[1,hmax], e(P1, Pi,2)αi}i∈[1,nauth]

A.6.3 Phases 1 and 2.

A makes q key extract queries.

B receives a key query for a domain with id = (id1, ..., id`) under authority i where

i ∈ [1, nauth] and chooses:

r′1, r
′
2, r
′
3, r
′
4, (z

′
1, j, z

′
2, j, (π j), η j) j∈[`+1,h′],w1,w2, π

′, γ1, γ2, η
′

U
←− Z∗p

B explicitly sets ∀ j ∈ [` + 1, h′]:

K1,1 = w1Pi,2 + r1Vi,2 − γ1ki(aF2)

K1,2 = r1V ′i,2 + γ1F2

K1,3 = r1F2

K2,1 = αiPi,2 + w1hi(attr)(dz − ax)F2 + r2Vi,2 − γ1kiπ
′(aF2)

K2,2 = r2V ′i,2 + w1hi(attr)(xF2) + γ1π
′F2

K2,3 = r2F2

D j,1 = w1yi, j(dz − ax)F2 + z1, jVi,2 − γ1π
′
jki(aF2)

D j,2 = z1, jV ′i,2 + w1yi, j(xF2) + γ1π
′
jF2
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D j,3 = z1, jF2

J1,1 = w2Pi,2 + r3Vi,2 − γ2ki(aF2)

J1,2 = r3V ′i,2 + γ2F2

J1,3 = r3F2

J2,1 = w2hi(attr)(dz − ax)F2 + r4Vi,2 − γ2η
′ki(aF2)

J2,2 = r4V ′i,2 + w2hi(attr)(xF2) + γ2η
′F2

J2,3 = r4F2

E j,1 = w2yi, j(dz − ax)F2 + z2, jVi,2 − γ2η
′
jki(aF2)

E j,2 = z2, jV ′i,2 + w1yi, j(xF2) + γ2η
′
jF2

E j,3 = z2, jF2

B implicitly sets:

π = π′ + γ−1
1 w1hi(attr)x

π j = π′ j + γ−1
1 w1yi, jx

η = η′ + γ−1
2 w2hi(attr)x

η j = η′j + γ−1
2 w2yi, jx

A.6.4 Challenge.

B receives two message policy pairs (M0, P∗0) and (M1, P∗1).

B chooses:

β∗
U
←− {0, 1}

a′i , ξ
U
←− Z∗p

B explicitly sets (where attrc ranges over each leaf node attribute in the policy):

sβdP1 = βd(szF1)
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e(P1, Pi,2)sαi
U
←− GT

e(P1, F2)sαg
U
←− GT

C1,1 = sH1(attrc) = hi(attrc)Z1

C1,2 = asH1(attrc) + µσF1 = a′ihi(attrc)Z1 + ξF1

C1,3 = −τsH1(attrc) − µσV ′1 = −vihi(attrc)Z1 − v′ia
′
ihi(attrc)Z1 − v′iξF1

C2,1 = sP1 = szF1

C2,2 = asP1 + µF1 = a′i(szF1)

C2,3 = −τsP1 − µV ′1 = −vi(szF1) − v′ia
′
i(szF1)

B implicitly sets:

a′i = kia + µ′

µ = µ′sz

ξ = µσ′

σ = σ′ + cdhi(attrc)

B encrypts Mβ∗ under the policy P∗β∗ using the values above and the algorithm EncryptCPA

and returns the result ĈT CPA.

A.6.5 Guess.

A returns its guess β′ to B

If Z1 is real then ĈT CPA encrypts a random message under policy P∗β∗ and simulates

GameM−random. If Z1 is random, then ĈT CPA encrypts a random message under a random,

structurally equivalent policy and simulates Game f inal. If B returns 1 if β∗ = β′ and 0

otherwise, then it can solve the A1 problem with advantage:

AdvA1
B = |Pr[β∗ = β′|Z1 is real] − Pr[β∗ = β′|Z1 is random]| = |Pr[XM−random] − Pr[X f inal]|
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Appendix B: MA-AHASBE Implementation Details

The MA-AHASBE system is introduced in Chapter 4. This chapter presents the details of

a prototype implementation of MA-AHASBE. The prototype implementation serves as a

proof of concept as well as the primary means of evaluating MA-AHASBE performance.

The chapter first introduces the tools and techniques used to build the implementation. The

next section then describes issues that must be addressed in an implementation that may

not be obvious from the construction given in Chapter 4. The performance of the MA-

AHASBE implementation is then presented and analyzed. The data is presented for both

size and time. The chapter concludes with a summary and some thoughts on future work.

B.1 Tools and Techniques

Java / C++ / Qt5 / MinGW The prototype for MA-AHASBE is primarily written in C++

and uses the Qt5 library. The code is compiled using the MinGW 4.8.1 compiler for

Windows. The current codebase is designed to be cross-platform and could build on

Windows, Linux and MacOS X. Java bindings to the native C++ have been written

and the Java implementation of the Amazon Web Services Software Development

Kit (AWS SDK) is used to interact with Amazon’s cloud services.

Sodium Qt5 provides SHA based hashing and message authentication code generation,

but does not contain many other cryptographic algorithms. Sodium is used for

cryptographic algorithms not provided by the Qt5 library such as AES and RSA.

YAML YAML Aint Markup Langauge (YAML) is a data serialization langauge that is

designed to be both human readable and relatively efficient to process. It provides

similar functionality as other data serialization formats such as JSON and XML.

Like JSON it provides methods for representing lists, associative arrays and scalars.

It is useful for representing tree-based or hierarchical structures, especially when the
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content may need to be read or edited manually. The MA-AHASBE implementation

uses the YAML-CPP 0.5.1 and SnakeYAML 1.14 projects, which are C++ and Java

(respectively) implementations of the YAML language for reading and writing the

various data structures in MA-AHASBE.

RELIC MA-AHASBE uses RELIC Tookit 0.3.5 [4], which is a pairing and multiple

precision arithmetic tookit. RELIC is used for all finite field arithmetic and to

perform all pairing operations. It was chosen over another popular pairing library

PBC due to is cross platform design, highly customizable build process, extensive

unit testing, and support for generic finite field arithmetic. RELIC has even been

used for embedded wireless sensor networks [84].

B.2 Implementation

This section addresses some of issues that must be addressed in an implementation of

MA-AHASBE. The mathematical construction of MA-AHASBE leaves many choices up

to the implementation, such as the security parameter λ or choice of bilinear group, and

the result of these choices may have a significant effect on the performance of the system.

The following list describes the specific choices made for the prototype implementation.

Elements listed in parenthesis represent the relevant mathematical terms presented in

Chapter 4.

Security Parameter (λ) The security parameter is chosen to be λ = 128. This level of

security is quite common for cryptographic implementations. This means that the

prototype implementation can be used to transport 128-bit AES keys and provides

a reasonable tradeoff between security and efficiency. As described in the Elliptic

Curve entry below, there are efficiency advantages for pairing based cryptography by

staying with 128-bit security, particularly for Type-3 pairings.
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Cryptographic Hash (H) For this prototype,H = S HA-256. The implementation comes

from the Qt5 library. It might seem odd that SHA-256 was chosen rather than SHA-

128 if λ = 128. This is due to the nature of the underlying pairing implementation.

In order to have 128-bit security, points on the elliptic curve described below are

elements of Zp where p is a 256-bit prime number. So a 256-bit hash algorithm is

a more natural fit due to the size of the underlying finite field of the elliptic curve,

rather the security parameter. In addition to its uses as described in Chapter 4, this

hash has two other important functions. First, it creates a unique name for each global

or public parameter that is created through the GlobalSetup and AuthoritySetup

algorithms respectively by hashing the contents of the parameters to be used as a

reference throughout the system. Secondly, the construction in Chapter 4 describes

the entries in identity tuples as being elements of Zp. In a real world implementation,

however, these elements tend to be strings. The hash algorithmH is used to map text

strings to elements of Zp by the calculation: id = H(IDstring) mod p where id ∈ Zp

and IDstring represents a string value such as “Student” or “University”. Since H is

a cryptographic hash algorithm and therefore collision resistant, in practical terms

(and with high probability) this mapping will be bijective over the strings used for

identities.

Pairwise Hash (h) In order to perform the CCA transformation described in [19], a hash

function from a family of pairwise independent hash functions must be selected.

For MA-AHASBE, the relatively straightforward approach described in [26] is used.

This is done with the following formula: h(x) = ((ax + b) mod q) mod m where x is

an value to be hashed, q is a 448 bit prime number, a, b ∈U Z∗q and m is 2129. Note

that this hash function is only used to generate a key to the MAC algorithm which

only requires a 128-bit key, and is not used to map to finite field elements or points

on the elliptic curve. Therefore, unlikeH , its values can remain 128-bits in size.
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Elliptic Curve (p, e, G1, G2, GT ) The choice of elliptic curve is narrowed down by the

pairing library RELIC and the fact that MA-AHASBE is based on Type-3 pairings.

At the 128-bit security level, Baretto-Naehrig (BN) curves [10, 35, 88] are the most

efficient curves. The choice of generators for each group, the prime p, and the

implementation of the pairing e is based on the BN family of curves. This is also

the default choice for asymmetric pairings in RELIC.

Random Number Generation In cryptographic implementations, the source of entropy

can become very important in terms of both performance and security. Sources

with higher entropy (good for cryptographic purposes) such as an operating system’s

secure random generator can often incur a latency cost in order for the operating

system to ensure enough entropy is available in the result. Other sources can offer

quicker results (good for performance), but may have lower amounts of overall

entropy (bad for cryptographic purposes). The random number generator in the

MA-AHASBE implementation is set to draw from the operating system’s secure

random number generator. Specifically, the results in this chapter are using the

CryptGenRandom function which is part of the Windows cryptographic application

programming interface.

Data Structure Representation In an actual implementation, the data structures presented

in Chapter 4 must have some type of in-memory and on-disk representation. This in-

cludes global parameters, authority parameters, policies, ciphertexts, keys, and key

rings. While the parameters and keys are relatively flat, the policies and ciphertexts

have a hierarchical aspect to them. YAML was chosen as a data serialization format

because it is easy to manipulate the variety of data structures found in MA-AHASBE.

Also as a prototype implementation, it is important that the data serialization format

is easily readable and writable by a human to facilitate development. YAML uses

significant whitespace, which means that whitespace has syntactical meaning. While
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this helps boost readability, it also has a some cost in terms of the size of the data

structures.

Finally, it is worth noting items mentioned in Chapter 4 that are not a part of the current

implementation. The following items are currently not implemented:

• Cross domain attributes

• Updating single attributes of key structures

• Decentralized global parameter generation through SMPC

B.2.1 Side Effects and Optimization.

Before discussing the performance metrics, it is worth noting that the implementation of

MA-AHASBE is not optimized nor rigorously scrubbed for potential side effects. In the

case of optimization, the design of the implementation has been focused on the practicality,

reliability and clarity of the code rather than on its performance. As such it could be

expected that another design with a heavier emphasis on performance would perform faster.

On the other hand, the code has not been thoroughly analyzed for potential side effects.

As is often the case with implementations of cryptographic algorithms, the most serious

vulnerabilities are discovered through so called side-channel analysis. Side effects are

introduced in cryptographic implementations when there exists some detectable difference

in performance when executing operations with sensitive key data. The performance

difference could be in terms of power usage, sound emissions, heat, time, or a variety of

other factors. RELIC offers a variety of options to select algorithms that are less susceptible

to this type of analysis. For example, RELIC can use the Montgomery’s ladder technique

to perform elliptic curve point addition. This technique is not as efficient as other more

direct techniques, but involves a deterministic set of operations that is independent of the

operands. So while further optimization could improve the implementation performance,

a more robust check of potential side effects could result in potentially slower algorithms.
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In the end, the prototype implementation is not designed to be production quality, but to

serve more as an indicator to what MA-AHASBE performance might be in a real-world

implementation.

B.3 Performance

The performance of MA-AHASBE is primarily dependent on policy size, but if certain

attribute protection mechanisms are used the performance can also depend on the number

of decryption keys possessed by the decrypting party. In order to present the performance

characteristics, two examples have been chosen to demonstrate to points of complexity.

The first scenario has a relatively simple policy, while the second scenario contains a more

complex policy with the attribute protection mechanism turned on. The first policy is shown

in Figure B.1 and the second policy is shown in Figure B.2.

.

G1

1

A1

1

〈Domain, Sub〉
3

A B C

Figure B.1: Scenario 1

Information regarding the policy sizes are shown in Table B.1. The size of the key rings

necessary for decryption are shown in Table B.2. Finally, the time required for performing

encryption and decryption is shown in Table B.3. Each result shows the average of five

samples, with the standard deviation shown in parenthesis.
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PHY220

〈Registrar, Pass〉

〈University, Electrical
Engineering〉

1

1 → 0

2

ENG321 1

〈Registrar,
Pass〉

〈Registrar,
Audit〉

A2

1

〈Corporation,
Internship Program〉

1

Intern

A3

1

〈Government,
Programs, Boom〉

1

Special Access

Figure B.2: Scenario 2

Scenario 1 Scenario 2

Domains 1 4

Total Nodes 7 17

Leaf Nodes 3 7

Hidden Nodes 0 1

Policy Size 0.295 kb (0.001) 1.552 kb (0.002)

Ciphertext Size 1.505 kb (0.004) 3.289 kb (0.003)

Table B.1: Policy Sizes

B.4 Sign/Verify Constructions

Constructions for creating and verifying signatures with MA-AHASBE are presented

without proof here (the proof should be a straightfoward application of the argument

presented in [47] regarding hierarchical IBE):
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Scenario 1 Scenario 2

Domains 1 4

Attribute Sets 1 8

Attributes 4 13

Key Ring Size 5.412 kb (0.005) 16.251 kb (0.015)

Table B.2: Key Sizes

Scenario 1 Scenario 2

Hidden Node Recovery N/A 0.562 s (0.194)

Key Ring Generation 1.680 s (0.038) 5.329 s (0.027)

Encryption 0.091 s (0.002) 0.221 s (0.002)

Decryption 1.007 (0.008) 2.613 s (0.207)

Table B.3: Timing

Sign(GP, PPA,M,US K,IDattribute) Let H(M) mod p = m where H(M) is the crypto-

graphic hash of the input message. Run Delegate(US K, PPA,IDattribute = (id1, ..., id`,m =

id`+1, ` + 1). Return σ = (m,IDattribute, J) where J is the set of J components in the key

returned by the Delegate algorithm.

Verify(GP,M, PPA,IDattribute, σ) Let H(M) mod p = m where H(M) is the crypto-

graphic hash of the input message. If m or IDattribute do not match their corresponding

values in the signature, return false. Let attrm = (IDattribute,m). Create a set of cipher-

texts similar to those created for a local leaf node in the Encrypt algorithm, but without

multiplying by the value qt(0). Then run the DecryptNode algorithm on the ciphertext as

if it was a local leaf node, replacing the K components with the J components from the
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signature. If the result is equal to one, then the signature verifies and return true. Return

false otherwise. The decryption equation is given below:

1 ?
=

e(C1,1, J1,1)e(C1,2, J1,2)e(C1,3, J1,3)
e(C2,1, J2,1)e(C2,2, J2,2)e(C2,3, J2,3)

?
=

e(H1(attrm),w2P2+r3V2)e(aH1(attrm),r3V′2)e(−τH1(attrm),r3F2)
e(P1,w2H2(attrm)+r4V2)e(aP1,r4V′2)e(−τP1,r4F2)

?
=

e(H1(attrcom),P2)w2 e(H1(attrm),V2)r3 e(H1(attrm),V′2)ar3 e(H1(attrm),F2)−τr3

e(P1,H2(attrm))w2 e(P1,V2)r4 e(P1,V′2)ar4 e(P1,F2)−τr4
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Appendix C: Notes on Encrypted Search and Real-Time Collaboration

The attribute-based encryption system presented in Chapters 4 and 5 addresses the problem

of encrypting documents in preparation for storing them in the cloud. However, once

encrypted documents are placed in the cloud, the CSP is now limited in the amount of

processing and services it can provide. Therefore, performing text based search over

encrypted documents is a critical task in order to consider placing a large volume of

potentially sensitive documents on untrusted cloud resources. This appendix examines

how MA-AHASBE can be combined with existing encrypted search techniques to provide

an end-to-end solution.

C.1 Related Work on Enrypted Search

Storing encrypted documents in the cloud reduces amount of trust a user needs to place

in the CSP, but at the same time it also restricts the useful things that the CSP can do

with the data. Perhaps the most straightforward consequence is that it is no longer a

straightforward task to index and search over the store of documents. Text search and

information retrieval have become cornerstones of a digital age. Due to the popularity of

Internet search engines, keyword based search with ranked results has become a natural

way to perform information retrieval over a large collection of documents. Search engines

are able to build their search indices quickly and efficiently because the engines have direct,

plaintext access to the documents.

One approach is to encrypt all data client-side before sending it to the CSP. While this

does prevent the CSP from accessing potentially sensitive data, it could also prevent the

CSP from doing any meaningful work on the data. A motivating example is the service

of providing keyword search. Traditional search engine indexing schemes rely on having

access to the plaintext data in order to create efficient search indices in order to quickly
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return the most relevant results to a user query. A plaintext search engine can perform

sophisticated lexical analysis of both the search query terms as well as the underlying

dataset independent of any client processing of the data. However, when the dataset is

encrypted on the client side, the client must assume responsibility for processing the data.

Therefore, minimizing this processing burden on the client while maintaining the security

and privacy benefits of client-side encryption are desirable properties of an encrypted

search algorithm.

It is worthwhile to note that the concept of remote encrypted storage retrieval is distinct

from another related concept of private information retrieval (PIR). With PIR, the goal is to

allow users to make queries on a shared database without other parties or the database server

knowing the contents of the query. Often PIR systems utilize databases that are stored in

plaintext, since the goal is not to protect the stored information, but rather the query. This

is not the same as protecting the content of the data stored on a remote, untrusted server.

One of the earliest papers to discuss the topic of remote encrypted storage retrieval by

keyword was by Song et. al [96]. Building on this work, a number of additional papers have

since been published proposing various enhancements. A method for efficient conjunctive

keyword search is described by Golle et al in [50]. Proposed improvements to this method

are in [22] and [7]. However, analysis of [22], [7] show they may not be semantically

secure as described in [61]. Another set of attacks on conjunctive keyword search schemes

is described in [92]. This illustrates that it is not trivial to extend these cryptographic

systems in ways that provide efficient indexed search as well as preserving privacy. In

addition to conjunctive search, techniques for fuzzy keyword searches are found in [8],

[9] and [10]. Finally, techniques for performing ranked keyword search can be found in

[24, 25, 106, 107]. The system presented in [25] called MSRE represents the state of the

art in multi-keyword ranked search.
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C.1.1 Homomorphic Encryption.

Homomorphic encryption is often cited as the gateway to remote encrypted storage and

private cloud computing. Homomorphic encryption allows a third party to perform a

arithmetic operation (such as add, subtract, multiply and divide) on the encrypted form of

data without having the decryption key, and the effect will carry over to the corresponding

plaintext. Many encryption schemes used in public key cryptography have natural

homomorphic properties. These schemes are usually only homomorphic for some subset of

operations, such as just addition/subtraction with Paillier [85], or multiplication with RSA

[93]. These schemes are referred to as partially homomorphic encryption systems.

The first fully homomorphic scheme was discovered by Gentry [45]. It uses a worst

case generation of an ideal lattice structure and the difficulty of searching through such a

structure to bootstrap a partially homomorphic system into a fully homomorphic encryption

system. Since Gentry’s discovery, improvements on the efficiency of this system have

been made. Research has also been done on the practical applications of homomorphic

encryption [16].

A major challenge for fully homomorphic encryption algorithms to be used in search over

encrypted data is the large cost of encryption and decryption, as well as key generation and

storage. For example, the implementation of Gentry’s algorithm in [46] describes “small”

key sizes of 70 Megabytes and “large” key sizes of 2.3 Gigabytes. Also the time to generate

these keys range from 30 seconds for the small case and 30 minutes for the large case. Some

more recent work at optimizing fully homomorphic encryption schemes has been done

using ring learning with error (RWLE) problems [20, 98]. Even as the efficiency of fully

homomorphic encryption algorithms increases, the applications so far require encrypting

each bit or token of plaintext using the fully homomorphic encryption. In practical systems,

this operation is too expensive even for partially homomorphic encryption such as RSA.

Typically, a fast symmetric key is used for bulk encryption of data. The symmetric key,
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which is very small compared to the size of the data that needs to be protected, can then

itself be protected through a more expensive operation such as Paillier or RSA. It seems

that if homomorphic encryption will be used in securing cloud computing, that it will be in

conjunction, rather than in place of, traditional cryptographic concepts such symmetric key

encryption, public key encryption and secure hash techniques. The difficulty of mapping

a fully homomorphic encryption primitive to the general class of private, multi-client

computing problems as described in [103] is still an open research problem.

C.2 Multi-Keyword Ranked Search Over Encrypted Data

The multi-keyword ranked search over encrypted data algorithm MSRE [25] is a recent

advancement in the area of encrypted search. It uses a variation of a secure k-nearest

neighbor search using a document vector model. In this approach, documents are

represented as vectors in a vector space. A query consists of various keywords that

represent content the user is interested in. When a query is made, it is first converted

to a vector in the same manner as documents. This query vector is then compared against

every document in the collection, using the cosine of the angles of the vectors as a similarity

measure. Query and document vectors that are oriented in the same way in vector space

are assumed to be closely related. Since the similarity measure comes out as a numerical

quantity, it also provides for a ranking of the similarity. MSRE uses a symmetric key

to protect both the contents of the query and the indices built from the documents. The

primary limitation is that the dictionary size used to build the indices must be a fixed size.

Also, MSRE requires a security parameter that trades security for search accuracy. MSRE

appears to be a promising approach for doing keyword searches over encrypted data.

C.3 Related Work on Group Collaboration

Work on real-time, group collaboration algorithms date back to 1989 to the work of Gibbs

and Ellis [36]. This introduced the idea of the operational transformation (OT) which is
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an algorithmic strategy that addresses the issues that arise in high latency, concurrent, real-

time systems that require a shared working state. The advantages of the OT algorithm

is that it does not require locks and edits to the shared state can be applied to the local

copy immediately. In order for the OT algorithm to work, there must be a transformation

algorithm that can work pairwise over every type of operation (e.g., add a character, remove

a character, move cursor). The transformation algorithm is used to effectively reorder

operations that arrive from remote clients. This process allows local edits to be applied

immediately, which reduces the perception of latency to the local user. The OT algorithm

can then process any remote edits that were, with respect to global time, performed before

the local edits. This reduces the impact of a high latency communication channel and is

perfectly suited for applications such as real-time document editing.

C.3.1 SPORC.

SPORC [37] is a group collaboration protocol that operates on a security model of untrusted

servers. It combines the previous techniques of OT and fork* consistency. In order to

detect malicious servers, the protocol relies on the clients in the system having access to an

out-band communication channel in order to detect if the server is malicious; though this

channel may be very low bandwidth. The role the server is reduced to providing availability

of the data, which works well under the A-Trusted security paradigm discussed in Chapter

5.
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